共 50 条
Convergence of an adaptive semi-Lagrangian scheme for the Vlasov-Poisson system
被引:0
|作者:
Martin Campos Pinto
Michel Mehrenberger
机构:
[1] Université Pierre et Marie Curie,Laboratoire Jacques
[2] Université Louis Pasteur,Louis Lions, UMR CNRS 7598
来源:
Numerische Mathematik
|
2008年
/
108卷
关键词:
65M12;
65M50;
82D10;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
An adaptive semi-Lagrangian scheme for solving the Cauchy problem associated to the periodic 1+1-dimensional Vlasov-Poisson system in the two- dimensional phase space is proposed and analyzed. A key feature of our method is the accurate evolution of the adaptive mesh from one time step to the next one, based on a rigorous analysis of the local regularity and how it gets transported by the numerical flow. The accuracy of the scheme is monitored by a prescribed tolerance parameter ε which represents the local interpolation error at each time step, in the L∞ metric. The numerical solutions are proved to converge in L∞ towards the exact ones as ε and Δt tend to zero provided the initial data is Lipschitz and has a finite total curvature, or in other words, that it belongs to \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${W^{1,\infty} \cap W^{2,1}}$$\end{document} . The rate of convergence is \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal{O}({\Delta}t^2 + \varepsilon/{\Delta}t)}$$\end{document} , which should be compared to the results of Besse who recently established in (SIAM J Numer Anal 42(1):350–382, 2004) similar rates for a uniform semi-Lagrangian scheme, but requiring that the initial data are in \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathcal C}^2}$$\end{document} . Several numerical tests illustrate the effectiveness of our approach for generating the optimal adaptive discretizations.
引用
收藏
页码:407 / 444
页数:37
相关论文