Bilinear Hilbert Transform on Measure Spaces

被引:0
|
作者
O. Blasco
M. Carro
T. A. Gillespie
机构
[1] Departamento de Análisis Matemático,
[2] Universitad de Valencia,undefined
[3] Burjassot,undefined
[4] 46100-Valencia,undefined
[5] Departament de Matemàtica Aplicada i Anàlisi,undefined
[6] Universitat de Barcelona,undefined
[7] E–08071 Barcelona,undefined
[8] Department of Mathematics and Statistics,undefined
[9] University of Edinburgh,undefined
[10] Edinburgh EH9 3JZ,undefined
关键词
Differential Equation; Partial Differential Equation; Fourier Analysis; Measure Space; Transference Method;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we obtain the boundedness of the periodic, discrete and ergodic bilinear Hilbert transform, from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p_1}\times L^{p_2}$ into $L^{p_3}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/p_1+ 1/p_2=1/p_3$, $p_1, p_2 > 1$, and $p_3\ge 1$\end{document}. The main techniques are a bilinear version of the transference method of Coifman and Weiss and certain discretization of bilinear operators. In the periodic case, we also obtain the boundedness for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2/3<p_3<1$\end{document}
引用
收藏
页码:459 / 470
页数:11
相关论文
共 50 条