Measure theoretic aspects of the finite Hilbert transform

被引:0
|
作者
Curbera, Guillermo P. [1 ]
Okada, Susumu [2 ]
Ricker, Werner J. [3 ]
机构
[1] Univ Seville, Fac Matemat & IMUS, Calle Tarfia S-N, Seville 41012, Spain
[2] 112 Marcorni Crescent, Kambah, ACT, Australia
[3] Kathol Univ Eichstatt Ingolstadt, Math Geogr Fak, Ingolstadt, Germany
关键词
finite Hilbert transform; integral representation; vector measure; Zygmund space LlogL;
D O I
10.1002/mana.202200537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The finite Hilbert transform T, when acting in the classical Zygmund space LlogL (over (-1,1)), was intensively studied in [8]. In this note, an integral representation of T is established via the L-1(-1,1)-valued measure m(L1): A bar right arrow T(chi(A)) for each Borel set A subset of (-1,1). This integral representation, together with various non-trivial properties of m(L1), allows the use of measure theoretic methods (not available in [8]) to establish new properties of T. For instance, as an operator between Banach function spaces T is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for T plays a crucial role.
引用
收藏
页码:3927 / 3942
页数:16
相关论文
共 50 条
  • [1] The Number Theoretic Hilbert Transform
    Subhash Kak
    Circuits, Systems, and Signal Processing, 2014, 33 : 2539 - 2548
  • [2] The Number Theoretic Hilbert Transform
    Kak, Subhash
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2014, 33 (08) : 2539 - 2548
  • [3] THE HILBERT TRANSFORM OF A MEASURE
    Poltoratski, Alexei
    Simon, Barry
    Zinchenko, Maxim
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 : 247 - 265
  • [4] The Hilbert transform of a measure
    Alexei Poltoratski
    Barry Simon
    Maxim Zinchenko
    Journal d'Analyse Mathématique, 2010, 111 : 247 - 265
  • [5] Bilinear Hilbert Transform on Measure Spaces
    O. Blasco
    M. Carro
    T. A. Gillespie
    Journal of Fourier Analysis and Applications, 2005, 11 : 459 - 470
  • [6] Bilinear Hilbert transform on measure spaces
    Blasco, O
    Carro, M
    Gillespie, TA
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (04) : 459 - 470
  • [7] Radon transform in finite Hilbert space
    Revzen, M.
    EPL, 2012, 98 (01)
  • [8] The bilinear Hilbert transform is pointwise finite
    Lacey, MT
    REVISTA MATEMATICA IBEROAMERICANA, 1997, 13 (02) : 411 - 469
  • [9] Some inequalities for the finite Hilbert transform
    Dragomir, NM
    Dragomir, SS
    Farrell, PM
    INEQUALITY THEORY AND APPLICATIONS, VOL 1, 2001, : 113 - 122
  • [10] The finite Hilbert transform in weighted spaces
    Astala, K
    Paivarinta, L
    Saksman, E
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 1157 - 1167