Measure theoretic aspects of the finite Hilbert transform

被引:0
|
作者
Curbera, Guillermo P. [1 ]
Okada, Susumu [2 ]
Ricker, Werner J. [3 ]
机构
[1] Univ Seville, Fac Matemat & IMUS, Calle Tarfia S-N, Seville 41012, Spain
[2] 112 Marcorni Crescent, Kambah, ACT, Australia
[3] Kathol Univ Eichstatt Ingolstadt, Math Geogr Fak, Ingolstadt, Germany
关键词
finite Hilbert transform; integral representation; vector measure; Zygmund space LlogL;
D O I
10.1002/mana.202200537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The finite Hilbert transform T, when acting in the classical Zygmund space LlogL (over (-1,1)), was intensively studied in [8]. In this note, an integral representation of T is established via the L-1(-1,1)-valued measure m(L1): A bar right arrow T(chi(A)) for each Borel set A subset of (-1,1). This integral representation, together with various non-trivial properties of m(L1), allows the use of measure theoretic methods (not available in [8]) to establish new properties of T. For instance, as an operator between Banach function spaces T is not order bounded, it is not completely continuous and neither is it weakly compact. An appropriate Parseval formula for T plays a crucial role.
引用
收藏
页码:3927 / 3942
页数:16
相关论文
共 50 条
  • [31] Fine spectra of the finite Hilbert transform in function spaces
    Curbera, Guillermo P.
    Okada, Susumu
    Ricker, Werner J.
    ADVANCES IN MATHEMATICS, 2021, 380
  • [32] The finite Hilbert transform acting on the Zygmund space LlogL
    Curbera, Guillermo p.
    Okada, Susumu
    Ricker, Werner j.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2024, 25 (03) : 1527 - 1557
  • [33] On approximating the finite Hilbert transform and applications in numerical integration
    Usta, Fuat
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (16) : 5174 - 5183
  • [34] Diagonalization of the Finite Hilbert Transform on Two Adjacent Intervals
    A. Katsevich
    A. Tovbis
    Journal of Fourier Analysis and Applications, 2016, 22 : 1356 - 1380
  • [35] A Note on Approximating Finite Hilbert Transform and Quadrature Formula
    Fuat Usta
    Mediterranean Journal of Mathematics, 2019, 16
  • [36] HOLDER CONTINUOUS-FUNCTIONS AND THE FINITE HILBERT TRANSFORM
    OKADA, S
    ELLIOTT, D
    MATHEMATISCHE NACHRICHTEN, 1994, 169 : 219 - 233
  • [37] Diagonalization of the Finite Hilbert Transform on Two Adjacent Intervals
    Katsevich, A.
    Tovbis, A.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2016, 22 (06) : 1356 - 1380
  • [38] Analysis of Phase Relationship in ECoG using Hilbert Transform and Information Theoretic Measures
    Davis, Jeffery Jonathan
    Kozma, Robert
    2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [39] Diagonalization of the finite Hilbert transform on two adjacent intervals: the Riemann-Hilbert approach
    Bertola, Marco
    Blackstone, Elliot
    Katsevich, Alexander
    Tovbis, Alexander
    ANALYSIS AND MATHEMATICAL PHYSICS, 2020, 10 (03)
  • [40] ON THE ZEROS OF THE FOURIER-TRANSFORM OF FINITE MEASURE
    SEDLETSKII, AM
    MATHEMATICAL NOTES, 1993, 53 (1-2) : 77 - 84