Bilinear Hilbert Transform on Measure Spaces

被引:0
|
作者
O. Blasco
M. Carro
T. A. Gillespie
机构
[1] Departamento de Análisis Matemático,
[2] Universitad de Valencia,undefined
[3] Burjassot,undefined
[4] 46100-Valencia,undefined
[5] Departament de Matemàtica Aplicada i Anàlisi,undefined
[6] Universitat de Barcelona,undefined
[7] E–08071 Barcelona,undefined
[8] Department of Mathematics and Statistics,undefined
[9] University of Edinburgh,undefined
[10] Edinburgh EH9 3JZ,undefined
关键词
Differential Equation; Partial Differential Equation; Fourier Analysis; Measure Space; Transference Method;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we obtain the boundedness of the periodic, discrete and ergodic bilinear Hilbert transform, from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p_1}\times L^{p_2}$ into $L^{p_3}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/p_1+ 1/p_2=1/p_3$, $p_1, p_2 > 1$, and $p_3\ge 1$\end{document}. The main techniques are a bilinear version of the transference method of Coifman and Weiss and certain discretization of bilinear operators. In the periodic case, we also obtain the boundedness for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2/3<p_3<1$\end{document}
引用
收藏
页码:459 / 470
页数:11
相关论文
共 50 条
  • [1] Bilinear Hilbert transform on measure spaces
    Blasco, O
    Carro, M
    Gillespie, TA
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2005, 11 (04) : 459 - 470
  • [2] The bilinear Hilbert transform in UMD spaces
    Alex Amenta
    Gennady Uraltsev
    Mathematische Annalen, 2020, 378 : 1129 - 1221
  • [3] The bilinear Hilbert transform in UMD spaces
    Amenta, Alex
    Uraltsev, Gennady
    MATHEMATISCHE ANNALEN, 2020, 378 (3-4) : 1129 - 1221
  • [4] Bilinear Hilbert transform of ultradistributions
    Buchkovska, AL
    Pilipovic, S
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2002, 13 (03) : 211 - 221
  • [5] ENDPOINT BOUNDS FOR THE BILINEAR HILBERT TRANSFORM
    Di Plinio, Francesco
    Thiele, Christoph
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 368 (06) : 3931 - 3972
  • [6] Distributional estimates for the bilinear Hilbert transform
    Bilyk, Dmitriy
    Grafakos, Loukas
    JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (04) : 563 - 584
  • [7] The bilinear Hilbert transform is pointwise finite
    Lacey, MT
    REVISTA MATEMATICA IBEROAMERICANA, 1997, 13 (02) : 411 - 469
  • [8] On a hybrid of bilinear Hilbert transform and paraproduct
    Dong Dong
    Xiao Chun Li
    Acta Mathematica Sinica, English Series, 2018, 34 : 29 - 41
  • [9] THE HILBERT TRANSFORM OF A MEASURE
    Poltoratski, Alexei
    Simon, Barry
    Zinchenko, Maxim
    JOURNAL D ANALYSE MATHEMATIQUE, 2010, 111 : 247 - 265
  • [10] On a Hybrid of Bilinear Hilbert Transform and Paraproduct
    Dong DONG
    Xiao Chun LI
    Acta Mathematica Sinica,English Series, 2018, (01) : 29 - 41