Bilinear Hilbert Transform on Measure Spaces

被引:0
|
作者
O. Blasco
M. Carro
T. A. Gillespie
机构
[1] Departamento de Análisis Matemático,
[2] Universitad de Valencia,undefined
[3] Burjassot,undefined
[4] 46100-Valencia,undefined
[5] Departament de Matemàtica Aplicada i Anàlisi,undefined
[6] Universitat de Barcelona,undefined
[7] E–08071 Barcelona,undefined
[8] Department of Mathematics and Statistics,undefined
[9] University of Edinburgh,undefined
[10] Edinburgh EH9 3JZ,undefined
关键词
Differential Equation; Partial Differential Equation; Fourier Analysis; Measure Space; Transference Method;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we obtain the boundedness of the periodic, discrete and ergodic bilinear Hilbert transform, from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p_1}\times L^{p_2}$ into $L^{p_3}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/p_1+ 1/p_2=1/p_3$, $p_1, p_2 > 1$, and $p_3\ge 1$\end{document}. The main techniques are a bilinear version of the transference method of Coifman and Weiss and certain discretization of bilinear operators. In the periodic case, we also obtain the boundedness for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2/3<p_3<1$\end{document}
引用
收藏
页码:459 / 470
页数:11
相关论文
共 50 条
  • [31] BOUNDEDNESS OF THE HILBERT TRANSFORM ON BESOV SPACES
    Maatoug, A.
    Allaoui, S. E.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2020, 12 (02) : 443 - 450
  • [32] Approximation of the Hilbert Transform in Holder Spaces
    Aliev, R. A.
    Alizade, L. Sh.
    AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (02): : 88 - 98
  • [33] Boundedness of the Hilbert Transform in Besov Spaces
    Ushakova, E. P.
    ANALYSIS MATHEMATICA, 2023, 49 (04) : 1137 - 1174
  • [34] The finite Hilbert transform in weighted spaces
    Astala, K
    Paivarinta, L
    Saksman, E
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 : 1157 - 1167
  • [35] On boundedness of the Hilbert transform on Marcinkiewicz spaces
    Bekbayev, N. T.
    Tulenov, K. S.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04): : 26 - 32
  • [36] Boundedness of the Hilbert Transform in Besov Spaces
    E. P. Ushakova
    Analysis Mathematica, 2023, 49 : 1137 - 1174
  • [37] Limited range multilinear extrapolation with applications to the bilinear Hilbert transform
    David Cruz-Uribe
    José María Martell
    Mathematische Annalen, 2018, 371 : 615 - 653
  • [38] Limited range multilinear extrapolation with applications to the bilinear Hilbert transform
    Cruz-Uribe, David
    Maria Martell, Jose
    MATHEMATISCHE ANNALEN, 2018, 371 (1-2) : 615 - 653
  • [39] New Uniform Bounds for a Walsh Model of the Bilinear Hilbert Transform
    Oberlin, Richard
    Thiele, Christoph
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (05) : 1693 - 1711
  • [40] THE SPECTRAL MEASURE AND HILBERT TRANSFORM OF A MEASURE-PRESERVING TRANSFORMATION
    CAMPBELL, J
    PETERSEN, K
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 313 (01) : 121 - 129