Bilinear Hilbert Transform on Measure Spaces

被引:0
|
作者
O. Blasco
M. Carro
T. A. Gillespie
机构
[1] Departamento de Análisis Matemático,
[2] Universitad de Valencia,undefined
[3] Burjassot,undefined
[4] 46100-Valencia,undefined
[5] Departament de Matemàtica Aplicada i Anàlisi,undefined
[6] Universitat de Barcelona,undefined
[7] E–08071 Barcelona,undefined
[8] Department of Mathematics and Statistics,undefined
[9] University of Edinburgh,undefined
[10] Edinburgh EH9 3JZ,undefined
关键词
Differential Equation; Partial Differential Equation; Fourier Analysis; Measure Space; Transference Method;
D O I
暂无
中图分类号
学科分类号
摘要
In this article we obtain the boundedness of the periodic, discrete and ergodic bilinear Hilbert transform, from \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{p_1}\times L^{p_2}$ into $L^{p_3}$\end{document}, where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1/p_1+ 1/p_2=1/p_3$, $p_1, p_2 > 1$, and $p_3\ge 1$\end{document}. The main techniques are a bilinear version of the transference method of Coifman and Weiss and certain discretization of bilinear operators. In the periodic case, we also obtain the boundedness for \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$2/3<p_3<1$\end{document}
引用
收藏
页码:459 / 470
页数:11
相关论文
共 50 条
  • [21] On Calderon's conjecture for the bilinear Hilbert transform
    Lacey, MT
    Thiele, CM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (09) : 4828 - 4830
  • [22] Multilinear extrapolation and applications to the bilinear Hilbert transform
    Jesus Carro, Maria
    Grafakos, Loukas
    Maria Martell, Jose
    Soria, Fernando
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 357 (02) : 479 - 497
  • [23] Schmidt representation of bilinear operators on Hilbert spaces
    da Silva, Eduardo Brandani
    Fernandez, Dicesar Lass
    Neves, Marcus Vinicius de Andrade
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2022, 33 (02): : 494 - 516
  • [24] Quasi Pieces of the Bilinear Hilbert Transform Incorporated into a Paraproduct
    Dong, Dong
    JOURNAL OF GEOMETRIC ANALYSIS, 2019, 29 (01) : 224 - 246
  • [25] The bilinear Hilbert transform acting on Hermite and Laguerre functions
    Duoandikoetxea, Javier
    JOURNAL OF APPROXIMATION THEORY, 2010, 162 (01) : 131 - 140
  • [26] Quasi Pieces of the Bilinear Hilbert Transform Incorporated into a Paraproduct
    Dong Dong
    The Journal of Geometric Analysis, 2019, 29 : 224 - 246
  • [27] VARIATIONAL BOUNDS FOR A DYADIC MODEL OF THE BILINEAR HILBERT TRANSFORM
    Do, Yen
    Oberlin, Richard
    Palsson, Eyvindur Ari
    ILLINOIS JOURNAL OF MATHEMATICS, 2013, 57 (01) : 105 - 119
  • [28] SPACES OF INFINITE MEASURE AND POINTWISE CONVERGENCE OF THE BILINEAR HILBERT AND ERGODIC AVERAGES DEFINED BY LP-ISOMETRIES
    Berkson, Earl
    Demeter, Ciprian
    JOURNAL OF OPERATOR THEORY, 2010, 63 (02) : 455 - 482
  • [29] A spectral theorem for bilinear compact operators in Hilbert spaces
    da Silva, Eduardo Brandani
    Fernandez, Dicesar L.
    de Andrade Neves, Marcus Vinicius
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2021, 15 (02)
  • [30] A spectral theorem for bilinear compact operators in Hilbert spaces
    Eduardo Brandani da Silva
    Dicesar L. Fernandez
    Marcus Vinícius de Andrade Neves
    Banach Journal of Mathematical Analysis, 2021, 15