Learning Interpretable SVMs for Biological Sequence Classification

被引:0
|
作者
Gunnar Rätsch
Sören Sonnenburg
Christin Schäfer
机构
[1] Friedrich Miescher Laboratory,
[2] Max Planck Society,undefined
[3] Fraunhofer Institute FIRST,undefined
来源
关键词
Splice Site; Acceptor Splice Site; Multiple Kernel Learn; String Kernel; Positional Weight Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [11] Interpretable Sequence Learning for COVID-19 Forecasting
    Arik, Sercan O.
    Li, Chun-Liang
    Yoon, Jinsung
    Sinha, Rajarishi
    Epshteyn, Arkady
    Le, Long T.
    Menon, Vikas
    Singh, Shashank
    Zhang, Leyou
    Nikoltchev, Martin
    Sonthalia, Yash
    Nakhost, Hootan
    Kanal, Elli
    Pfister, Tomas
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [12] Statistical SVMs for robust detection, supervised learning, and universal classification.
    Huang, Dayu
    Unnikrishnan, Jayakrishnan
    Meyn, Sean
    Veeravalli, Venugopal
    Surana, Amit
    ITW: 2009 IEEE INFORMATION THEORY WORKSHOP ON NETWORKING AND INFORMATION THEORY, 2009, : 62 - +
  • [13] Study of transductive learning and unsupervised feature construction methods for biological sequence classification
    Stanescu, Ana
    Tangirala, Karthik
    Caragea, Doina
    PROCEEDINGS OF THE 2016 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING ASONAM 2016, 2016, : 999 - 1006
  • [14] Learning Interpretable Rules for Scalable Data Representation and Classification
    Wang, Zhuo
    Zhang, Wei
    Liu, Ning
    Wang, Jianyong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (02) : 1121 - 1133
  • [15] Requirements Classification with Interpretable Machine Learning and Dependency Parsing
    Dalpiaz, Fabiano
    Dell'Anna, Davide
    Aydemir, Fatma Basak
    Cevikol, Sercan
    2019 27TH IEEE INTERNATIONAL REQUIREMENTS ENGINEERING CONFERENCE (RE 2019), 2019, : 142 - 152
  • [16] Learning Support and Trivial Prototypes for Interpretable Image Classification
    Wang, Chong
    Liu, Yuyuan
    Chen, Yuanhong
    Liu, Fengbei
    Tian, Yu
    McCarthy, Davis
    Frazer, Helen
    Carneiro, Gustavo
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2062 - 2072
  • [18] Degradation stage classification via interpretable feature learning
    Alfeo, Antonio L. L.
    Cimino, Mario G. C. A.
    Vaglini, Gigliola
    JOURNAL OF MANUFACTURING SYSTEMS, 2022, 62 : 972 - 983
  • [19] Degradation stage classification via interpretable feature learning
    Alfeo, Antonio L.
    Cimino, Mario G.C.A.
    Vaglini, Gigliola
    Journal of Manufacturing Systems, 2022, 62 : 972 - 983
  • [20] A Bayesian Framework for Learning Rule Sets for Interpretable Classification
    Wang, Tong
    Rudin, Cynthia
    Doshi-Velez, Finale
    Liu, Yimin
    Klampfl, Erica
    MacNeille, Perry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18 : 1 - 37