Learning Interpretable SVMs for Biological Sequence Classification

被引:0
|
作者
Gunnar Rätsch
Sören Sonnenburg
Christin Schäfer
机构
[1] Friedrich Miescher Laboratory,
[2] Max Planck Society,undefined
[3] Fraunhofer Institute FIRST,undefined
来源
关键词
Splice Site; Acceptor Splice Site; Multiple Kernel Learn; String Kernel; Positional Weight Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [41] BPMs versus SVMs for image classification
    Wu, G
    Chang, E
    Li, CS
    IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOL I AND II, PROCEEDINGS, 2002, : A505 - A508
  • [42] Improved Classification Rates for Localized SVMs
    Blaschzyk, Ingrid
    Steinwart, Ingo
    JOURNAL OF MACHINE LEARNING RESEARCH, 2022, 23
  • [43] Segment and combine approach for biological sequence classification
    Geurts, P
    Cuesta, AB
    Wehenkel, L
    PROCEEDINGS OF THE 2005 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE IN BIOINFORMATICS AND COMPUTATIONAL BIOLOGY, 2005, : 194 - 201
  • [44] Biological Sequence Classification with Multivariate String Kernels
    Kuksa, Pavel P.
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2013, 10 (05) : 1201 - 1210
  • [45] An intrinsically interpretable neural network architecture for sequence-to-function learning
    Balci, Ali Tugrul
    Ebeid, Mark Maher
    Benos, Panayiotis, V
    Kostka, Dennis
    Chikina, Maria
    BIOINFORMATICS, 2023, 39 : i413 - i422
  • [46] Evolving Fisher Kernels for Biological Sequence Classification
    Won, K. -J.
    Saunders, C.
    Pruegel-Bennett, A.
    EVOLUTIONARY COMPUTATION, 2013, 21 (01) : 83 - 105
  • [47] Discovering differential genome sequence activity with interpretable and efficient deep learning
    Hammelman, Jennifer
    Gifford, David K.
    PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)
  • [48] An intrinsically interpretable neural network architecture for sequence-to-function learning
    Balci, Ali Tugrul
    Ebeid, Mark Maher
    Benos, Panayiotis, V
    Kostka, Dennis
    Chikina, Maria
    BIOINFORMATICS, 2023, 39 : I413 - I422
  • [49] Ensemble of SVMs for incremental learning
    Erdem, Z
    Polikar, R
    Gurgen, F
    Yumusak, N
    MULTIPLE CLASSIFIER SYSTEMS, 2005, 3541 : 246 - 256
  • [50] Image classification by combining multiple SVMS
    Zhang, De-Yuan
    Liu, Bing-Quan
    Wang, Xiao-Long
    Wang, Li-Juan
    PROCEEDINGS OF 2008 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2008, : 68 - +