Learning Interpretable SVMs for Biological Sequence Classification

被引:0
|
作者
Gunnar Rätsch
Sören Sonnenburg
Christin Schäfer
机构
[1] Friedrich Miescher Laboratory,
[2] Max Planck Society,undefined
[3] Fraunhofer Institute FIRST,undefined
来源
关键词
Splice Site; Acceptor Splice Site; Multiple Kernel Learn; String Kernel; Positional Weight Matrix;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] An Interpretable Deep Learning Model for Automatic Sound Classification
    Zinemanas, Pablo
    Rocamora, Martin
    Miron, Marius
    Font, Frederic
    Serra, Xavier
    ELECTRONICS, 2021, 10 (07)
  • [22] Learning Actively for Sequence Classification
    Inoije, Maoto
    Miura, Takao
    2017 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2017, : 50 - 53
  • [23] pysster: classification of biological sequences by learning sequence and structure motifs with convolutional neural networks
    Budach, Stefan
    Marsico, Annalisa
    BIOINFORMATICS, 2018, 34 (17) : 3035 - 3037
  • [24] Scalable Rule-Based Representation Learning for Interpretable Classification
    Wang, Zhuo
    Zhang, Wei
    Liu, Ning
    Wang, Jianyong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [25] Efficient Learning Interpretable Shapelets for Accurate Time Series Classification
    Fang, Zicheng
    Wang, Peng
    Wang, Wei
    2018 IEEE 34TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE), 2018, : 497 - 508
  • [26] Optimizing Binary Decision Diagrams for Interpretable Machine Learning Classification
    Cabodi, Gianpiero
    Camurati, Paolo E.
    Ignatiev, Alexey
    Marques-Silva, Joao
    Palena, Marco
    Pasini, Paolo
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1122 - 1125
  • [27] Interpretable deep learning models for the inference and classification of LHC data
    Ngairangbam, Vishal S.
    Spannowsky, Michael
    JOURNAL OF HIGH ENERGY PHYSICS, 2024, (05):
  • [28] An automatic integrative method for learning interpretable communities of biological pathways
    Beebe-Wang, Nicasia
    Dincer, Ayse B.
    Lee, Su-In
    NAR GENOMICS AND BIOINFORMATICS, 2022, 4 (02)
  • [29] Geometrically interpretable Variance Hyper Rectangle learning for pattern classification
    Sun, Jie
    Gu, Huamao
    Peng, Haoyu
    Fang, Yili
    Wang, Xun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [30] Optimizing Binary Decision Diagrams for Interpretable Machine Learning Classification
    Cabodi, Gianpiero
    Camurati, Paolo E.
    Marques-Silva, Joao
    Palena, Marco
    Pasini, Paolo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (10) : 3083 - 3087