A Bayesian framework for learning rule sets for interpretable classification

被引:0
|
作者
机构
[1] Wang, Tong
[2] Rudin, Cynthia
[3] Doshi-Velez, Finale
[4] Liu, Yimin
[5] Klampfl, Erica
[6] MacNeille, Perry
来源
| 1600年 / Microtome Publishing卷 / 18期
关键词
60;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [1] A Bayesian Framework for Learning Rule Sets for Interpretable Classification
    Wang, Tong
    Rudin, Cynthia
    Doshi-Velez, Finale
    Liu, Yimin
    Klampfl, Erica
    MacNeille, Perry
    JOURNAL OF MACHINE LEARNING RESEARCH, 2017, 18 : 1 - 37
  • [2] Bayesian Rule Sets for Interpretable Classification
    Wang, Tong
    Rudin, Cynthia
    Velez-Doshi, Finale
    Liu, Yimin
    Klampfl, Erica
    MacNeille, Perry
    2016 IEEE 16TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2016, : 1269 - 1274
  • [3] Learning Interpretable Decision Rule Sets: A Submodular Optimization Approach
    Yang, Fan
    He, Kai
    Yang, Linxiao
    Du, Hongxia
    Yang, Jingbang
    Yang, Bo
    Sun, Liang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [4] Scalable Rule-Based Representation Learning for Interpretable Classification
    Wang, Zhuo
    Zhang, Wei
    Liu, Ning
    Wang, Jianyong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [5] Learning Accurate and Interpretable Decision Rule Sets from Neural Networks
    Qiao, Litao
    Wang, Weijia
    Lin, Bill
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4303 - 4311
  • [6] Bayesian Rule Modeling for Interpretable Mortality Classification of COVID-19 Patients
    Yun, Jiyoung
    Basak, Mainak
    Han, Myung-Mook
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (03): : 2827 - 2843
  • [7] Multi-value Rule Sets for Interpretable Classification with Feature-Efficient Representations
    Wang, Tong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [8] An interpretable classification rule mining algorithm
    Cano, Alberto
    Zafra, Amelia
    Ventura, Sebastian
    INFORMATION SCIENCES, 2013, 240 : 1 - 20
  • [9] Learning rule sets and Sugeno integrals for monotonic classification problems
    Brabant, Quentin
    Couceiro, Miguel
    Dubois, Didier
    Prade, Henri
    Rico, Agnes
    FUZZY SETS AND SYSTEMS, 2020, 401 : 4 - 37
  • [10] MLIC: A MaxSAT-Based Framework for Learning Interpretable Classification Rules
    Malioutov, Dmitry
    Meel, Kuldeep S.
    PRINCIPLES AND PRACTICE OF CONSTRAINT PROGRAMMING, 2018, 11008 : 312 - 327