A Bayesian framework for learning rule sets for interpretable classification

被引:0
|
作者
机构
[1] Wang, Tong
[2] Rudin, Cynthia
[3] Doshi-Velez, Finale
[4] Liu, Yimin
[5] Klampfl, Erica
[6] MacNeille, Perry
来源
| 1600年 / Microtome Publishing卷 / 18期
关键词
60;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] Development and validation of an interpretable deep learning framework for Alzheimer's disease classification
    Qiu, Shangran
    Joshi, Prajakta S.
    Miller, Matthew, I
    Xue, Chonghua
    Zhou, Xiao
    Karjadi, Cody
    Chang, Gary H.
    Joshi, Anant S.
    Dwyer, Brigid
    Zhu, Shuhan
    Kaku, Michelle
    Zhou, Yan
    Alderazi, Yazan J.
    Swaminathan, Arun
    Kedar, Sachin
    Saint-Hilaire, Marie-Helene
    Auerbach, Sanford H.
    Yuan, Jing
    Sartor, E. Alton
    Au, Rhoda
    Kolachalama, Vijaya B.
    BRAIN, 2020, 143 : 1920 - 1933
  • [22] IMLI: An Incremental Framework for MaxSAT-Based Learning of Interpretable Classification Rules
    Ghosh, Bishwamittra
    Meel, Kuldeep S.
    AIES '19: PROCEEDINGS OF THE 2019 AAAI/ACM CONFERENCE ON AI, ETHICS, AND SOCIETY, 2019, : 203 - 210
  • [23] Interpretable and Fair Boolean Rule Sets via Column Generation
    Lawless, Connor
    Dash, Sanjeeb
    Gunluk, Oktay
    Wei, Dennis
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [24] Interpretable and Reliable Rule Classification Based on Conformal Prediction
    Abdelqader, Husam
    Smirnov, Evgueni
    Pont, Marc
    Geijselaers, Marciano
    MACHINE LEARNING AND PRINCIPLES AND PRACTICE OF KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT I, 2023, 1752 : 385 - 401
  • [25] LIBRE: Learning Interpretable Boolean Rule Ensembles
    Mita, Graziano
    Papotti, Paolo
    Filippone, Maurizio
    Michiardi, Pietro
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 245 - 254
  • [26] Bayesian networks for interpretable machine learning and optimization
    Mihaljevic, Bojan
    Bielza, Concha
    Larranaga, Pedro
    NEUROCOMPUTING, 2021, 456 : 648 - 665
  • [27] Interpretable Decision Sets: A Joint Framework for Description and Prediction
    Lakkaraju, Himabindu
    Bach, Stephen H.
    Leskovec, Jure
    KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 1675 - 1684
  • [28] Variational Bayesian deep fuzzy models for interpretable classification
    Kumar, Mohit
    Singh, Sukhvir
    Bowles, Juliana
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 132
  • [29] Building a Scalable and Interpretable Bayesian Deep Learning Framework for Quality Control of Free Form Surfaces
    Sinha, Sumit
    Franciosa, Pasquale
    Ceglarek, Dariusz
    IEEE ACCESS, 2021, 9 : 50188 - 50208
  • [30] Bayesian rule in the framework of uncertainty theory
    Waichon Lio
    Rui Kang
    Fuzzy Optimization and Decision Making, 2023, 22 : 337 - 358