Spin Chains as Modules over the Affine Temperley–Lieb Algebra

被引:0
|
作者
Théo Pinet
Yvan Saint-Aubin
机构
[1] Université de Montréal,Département de mathématiques et statistique
[2] Université de Paris and Sorbonne Université,undefined
[3] CNRS,undefined
[4] IMJ-PRG,undefined
来源
关键词
Affine Temperley–Lieb algebra; Temperley–Lieb algebra; Quantum groups; Uqsl2; Feigin–Fuchs module; Schur–Weyl duality; Indecomposable projective; XXZ chain; Periodic XXZ chain; 16G99; 17B37; 20G42; 82B20;
D O I
暂无
中图分类号
学科分类号
摘要
The affine Temperley–Lieb algebra aTLN(β) is an infinite-dimensional algebra over ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}$\end{document} parametrized by a number β∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in \mathbb {C}$\end{document} and an integer N∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\in \mathbb {N}$\end{document}. It naturally acts on (ℂ2)⊗N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb {C}^{2})^{\otimes N}$\end{document} to produce a family of representations labeled by an additional parameter z∈ℂ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z\in \mathbb C^{\times }$\end{document}. The structure of these representations, which were first introduced by Pasquier and Saleur (Nucl. Phys., 330, 523 1990) in their study of spin chains, is here made explicit. They share their composition factors with the cellular aTLN(β)-modules of Graham and Lehrer (Enseign. Math., 44, 173 1998), but differ from the latter by the direction of about half of the arrows of their Loewy diagrams. The proof of this statement uses a morphism introduced by Morin-Duchesne and Saint-Aubin (J. Phys. A, 46, 285207 2013) as well as new maps that intertwine various aTLN(β)-actions on the periodic chain and generalize applications studied by Deguchi et al. (J. Stat. Phys., 102, 701 2001) and after by Morin-Duchesne and Saint-Aubin (J. Phys. A, 46, 494013 2013).
引用
收藏
页码:2523 / 2584
页数:61
相关论文
共 50 条
  • [21] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [22] THE MODULAR TEMPERLEY-LIEB ALGEBRA
    Spencer, Robert A.
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 177 - 208
  • [23] SPIN-S QUANTUM CHAINS AND TEMPERLEY-LIEB ALGEBRAS
    BATCHELOR, MT
    BARBER, MN
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (01): : L15 - L21
  • [24] THE BLOB ALGEBRA AND THE PERIODIC TEMPERLEY-LIEB ALGEBRA
    MARTIN, P
    SALEUR, H
    LETTERS IN MATHEMATICAL PHYSICS, 1994, 30 (03) : 189 - 206
  • [25] The quantum spin chains of Temperley–Lieb type and the topological basis states
    Chunfang Sun
    Kang Xue
    Gangcheng Wang
    Chengcheng Zhou
    Guijiao Du
    Quantum Information Processing, 2013, 12 : 3079 - 3092
  • [26] Bethe ansatz solutions for Temperley-Lieb quantum spin chains
    Ghiotto, RCT
    Malvezzi, AL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2000, 15 (21): : 3395 - 3425
  • [27] Temperley-Lieb planar algebra modules arising from the ADE planar algebras
    Reznikoff, SA
    JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 228 (02) : 445 - 468
  • [28] Restriction and induction of indecomposable modules over the Temperley-Lieb algebras
    Belletete, Jonathan
    Ridout, David
    Saint-Aubin, Yvan
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2018, 51 (04)
  • [29] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [30] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29): : 5065 - 5080