THE MODULAR TEMPERLEY-LIEB ALGEBRA

被引:2
|
作者
Spencer, Robert A. [1 ]
机构
[1] Univ Cambridge, Dept Pure Math & Math Stat, Cambridge, England
基金
英国工程与自然科学研究理事会;
关键词
Temperley-Lieb; diagram algebras; modular representation theory;
D O I
10.1216/rmj.2023.53.177
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate the representation theory of the Temperley-Lieb algebra, TLn(delta), defined over a field of positive characteristic. The principle question we seek to answer is the multiplicity of simple modules in cell modules for TLn over arbitrary fields. This provides us with the decomposition numbers for this algebra, as well as the dimensions of all simple modules. We obtain these results from purely diagrammatic principles, without appealing to realisations of TLn as endomorphism algebras of Uq(sl2) modules. Our results strictly generalise the known characteristic zero theory of the Temperley-Lieb algebras.
引用
收藏
页码:177 / 208
页数:32
相关论文
共 50 条
  • [1] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [2] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    [J]. MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345
  • [3] Meanders and the Temperley-Lieb algebra
    P. Di Francesco
    O. Golinelli
    E. Guitter
    [J]. Communications in Mathematical Physics, 1997, 186 (1) : 1 - 59
  • [4] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [5] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    [J]. QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [6] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29): : 5065 - 5080
  • [7] THE BLOB ALGEBRA AND THE PERIODIC TEMPERLEY-LIEB ALGEBRA
    MARTIN, P
    SALEUR, H
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 1994, 30 (03) : 189 - 206
  • [8] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    [J]. REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +
  • [9] Dimer representations of the Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Rasmussen, Jorgen
    Ruelle, Philippe
    [J]. NUCLEAR PHYSICS B, 2015, 890 : 363 - 387
  • [10] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    [J]. JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317