THE BLOB ALGEBRA AND THE PERIODIC TEMPERLEY-LIEB ALGEBRA

被引:129
|
作者
MARTIN, P
SALEUR, H
机构
[1] UNIV SO CALIF,DEPT PHYS,LOS ANGELES,CA 90089
[2] UNIV SO CALIF,DEPT MATH,LOS ANGELES,CA 90089
关键词
D O I
10.1007/BF00805852
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We determine the structure of two variations on the Temperley-Lieb algebra, both used for dealing with special kinds of boundary conditions in statistical mechanics models. The first is a new algebra, the 'blob' algebra. We determine both the generic and all the exceptional structures for this two parameter algebra. The second is the periodic Temperley-Lieb algebra. The generic structure and part of the exceptional structure of this algebra have already been studied. We complete the analysis using results from the study of the blob algebra.
引用
收藏
页码:189 / 206
页数:18
相关论文
共 50 条
  • [1] CALCULATIONS WITH THE TEMPERLEY-LIEB ALGEBRA
    LICKORISH, WBR
    [J]. COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (04) : 571 - 591
  • [2] Framization of the Temperley-Lieb algebra
    Goundaroulis, Dimos
    Juyumaya, Jesus
    Kontogeorgis, Aristides
    Lambropoulou, Sofia
    [J]. MATHEMATICAL RESEARCH LETTERS, 2017, 24 (02) : 299 - 345
  • [3] Meanders and the Temperley-Lieb algebra
    P. Di Francesco
    O. Golinelli
    E. Guitter
    [J]. Communications in Mathematical Physics, 1997, 186 (1) : 1 - 59
  • [4] Meanders and the Temperley-Lieb algebra
    DiFrancesco, P
    Golinelli, O
    Guitter, E
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 186 (01) : 1 - 59
  • [5] THE MODULAR TEMPERLEY-LIEB ALGEBRA
    Spencer, Robert A.
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2023, 53 (01) : 177 - 208
  • [6] The Fibonacci Model and the Temperley-Lieb Algebra
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    [J]. QUANTUM INFORMATION AND COMPUTATION VII, 2009, 7342
  • [7] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (29): : 5065 - 5080
  • [8] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    [J]. REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +
  • [9] Dimer representations of the Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Rasmussen, Jorgen
    Ruelle, Philippe
    [J]. NUCLEAR PHYSICS B, 2015, 890 : 363 - 387
  • [10] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    [J]. JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317