Spin Chains as Modules over the Affine Temperley–Lieb Algebra

被引:0
|
作者
Théo Pinet
Yvan Saint-Aubin
机构
[1] Université de Montréal,Département de mathématiques et statistique
[2] Université de Paris and Sorbonne Université,undefined
[3] CNRS,undefined
[4] IMJ-PRG,undefined
来源
关键词
Affine Temperley–Lieb algebra; Temperley–Lieb algebra; Quantum groups; Uqsl2; Feigin–Fuchs module; Schur–Weyl duality; Indecomposable projective; XXZ chain; Periodic XXZ chain; 16G99; 17B37; 20G42; 82B20;
D O I
暂无
中图分类号
学科分类号
摘要
The affine Temperley–Lieb algebra aTLN(β) is an infinite-dimensional algebra over ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {C}$\end{document} parametrized by a number β∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\beta \in \mathbb {C}$\end{document} and an integer N∈ℕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$N\in \mathbb {N}$\end{document}. It naturally acts on (ℂ2)⊗N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(\mathbb {C}^{2})^{\otimes N}$\end{document} to produce a family of representations labeled by an additional parameter z∈ℂ×\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$z\in \mathbb C^{\times }$\end{document}. The structure of these representations, which were first introduced by Pasquier and Saleur (Nucl. Phys., 330, 523 1990) in their study of spin chains, is here made explicit. They share their composition factors with the cellular aTLN(β)-modules of Graham and Lehrer (Enseign. Math., 44, 173 1998), but differ from the latter by the direction of about half of the arrows of their Loewy diagrams. The proof of this statement uses a morphism introduced by Morin-Duchesne and Saint-Aubin (J. Phys. A, 46, 285207 2013) as well as new maps that intertwine various aTLN(β)-actions on the periodic chain and generalize applications studied by Deguchi et al. (J. Stat. Phys., 102, 701 2001) and after by Morin-Duchesne and Saint-Aubin (J. Phys. A, 46, 494013 2013).
引用
收藏
页码:2523 / 2584
页数:61
相关论文
共 50 条
  • [31] Parabolic Temperley-Lieb modules and polynomials
    Sentinelli, Paolo
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2016, 138 : 1 - 28
  • [32] Ribbon Graphs and Temperley-Lieb Algebra
    Chbili, Nafaa
    KNOT THEORY AND ITS APPLICATIONS, 2016, 670 : 299 - 312
  • [33] THE FIBONACCI MODEL AND THE TEMPERLEY-LIEB ALGEBRA
    Kauffman, Louis H.
    Lomonaco, Samuel J., Jr.
    STATISTICAL PHYSICS, HIGH ENERGY, CONDENSED MATTER AND MATHEMATICAL PHYSICS, 2008, : 277 - +
  • [34] THE TEMPERLEY-LIEB ALGEBRA AT ROOTS OF UNITY
    GOODMAN, FM
    WENZL, H
    PACIFIC JOURNAL OF MATHEMATICS, 1993, 161 (02) : 307 - 334
  • [35] Seminormal forms for the Temperley-Lieb algebra
    Bastias, Katherine Ormeno
    Ryom-Hansen, Steen
    JOURNAL OF ALGEBRA, 2025, 662 : 852 - 901
  • [36] A Temperley-Lieb Analogue for the BMW Algebra
    Lehrer, G. I.
    Zhang, R. B.
    REPRESENTATION THEORY OF ALGEBRAIC GROUPS AND QUANTUM GROUPS, 2010, 284 : 155 - +
  • [37] Dimer representations of the Temperley-Lieb algebra
    Morin-Duchesne, Alexi
    Rasmussen, Jorgen
    Ruelle, Philippe
    NUCLEAR PHYSICS B, 2015, 890 : 363 - 387
  • [38] Categorification of the Temperley-Lieb algebra by bimodules
    Gobet, Thomas
    JOURNAL OF ALGEBRA, 2014, 419 : 277 - 317
  • [39] The quantum spin chains of Temperley-Lieb type and the topological basis states
    Sun, Chunfang
    Xue, Kang
    Wang, Gangcheng
    Zhou, Chengcheng
    Du, Guijiao
    QUANTUM INFORMATION PROCESSING, 2013, 12 (09) : 3079 - 3092
  • [40] On representations of affine Temperley-Lieb algebras - II
    Erdmann, K
    Green, RM
    PACIFIC JOURNAL OF MATHEMATICS, 1999, 191 (02) : 243 - 273