The spherical metric and univalent harmonic mappings

被引:0
|
作者
Yusuf Abu Muhanna
Rosihan M. Ali
Saminathan Ponnusamy
机构
[1] American University of Sharjah,Department of Mathematics
[2] Universiti Sains Malaysia (USM),School of Mathematical Sciences
[3] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Harmonic univalent map; Subordination; Spherical area; Hyperbolic metric; Hyperbolic domain; Modular function; Primary 30C35; Secondary 30C25; 30C45; 30F45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let f=h+g¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}$$\end{document} be a harmonic univalent map in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, where h and g are analytic. This paper finds an improved estimate for the second coefficient of h. Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci Fenn Ser A I 9:3–25, 1984), and by Sheil-Small (J Lond Math Soc 42:237–248, 1990). When the sup-norm of the dilatation is less than 1, it is also shown that the spherical area of the covering surface of h is dominated by the spherical area of the covering surface of f.
引用
收藏
页码:703 / 716
页数:13
相关论文
共 50 条
  • [1] The spherical metric and univalent harmonic mappings
    Abu Muhanna, Yusuf
    Ali, Rosihan M.
    Ponnusamy, Saminathan
    [J]. MONATSHEFTE FUR MATHEMATIK, 2019, 188 (04): : 703 - 716
  • [2] Univalent σ-harmonic mappings
    Alessandrini, G
    Nesi, V
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (02) : 155 - 171
  • [3] Univalent σ-Harmonic Mappings
    Giovanni Alessandrini
    Vincenzo Nesi
    [J]. Archive for Rational Mechanics and Analysis, 2001, 158 : 155 - 171
  • [4] Sections of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 527 - 540
  • [5] On the Shears of Univalent Harmonic Mappings
    M. Aydogan
    D. Bshouty
    A. Lyzzaik
    F. M. Sakar
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 2853 - 2862
  • [6] SLIT UNIVALENT HARMONIC MAPPINGS
    Grigoryan, Armen
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 169 - 187
  • [7] Coefficients of univalent harmonic mappings
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Victor V. Starkov
    [J]. Monatshefte für Mathematik, 2018, 186 : 453 - 470
  • [8] On the Shears of Univalent Harmonic Mappings
    Aydogan, M.
    Bshouty, D.
    Lyzzaik, A.
    Sakar, F. M.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (06) : 2853 - 2862
  • [9] On odd univalent harmonic mappings
    Jaglan, Kapil
    Kaliraj, Anbareeswaran Sairam
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (05)
  • [10] Coefficients of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 186 (03): : 453 - 470