The spherical metric and univalent harmonic mappings

被引:0
|
作者
Yusuf Abu Muhanna
Rosihan M. Ali
Saminathan Ponnusamy
机构
[1] American University of Sharjah,Department of Mathematics
[2] Universiti Sains Malaysia (USM),School of Mathematical Sciences
[3] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Harmonic univalent map; Subordination; Spherical area; Hyperbolic metric; Hyperbolic domain; Modular function; Primary 30C35; Secondary 30C25; 30C45; 30F45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let f=h+g¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}$$\end{document} be a harmonic univalent map in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, where h and g are analytic. This paper finds an improved estimate for the second coefficient of h. Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci Fenn Ser A I 9:3–25, 1984), and by Sheil-Small (J Lond Math Soc 42:237–248, 1990). When the sup-norm of the dilatation is less than 1, it is also shown that the spherical area of the covering surface of h is dominated by the spherical area of the covering surface of f.
引用
下载
收藏
页码:703 / 716
页数:13
相关论文
共 50 条
  • [31] On the dilatation of univalent planar harmonic mappings
    Weitsman, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (02) : 447 - 452
  • [32] Harmonic Univalent Mappings and Minimal Graphs
    Boyd, Zach
    Dorff, Michael
    CURRENT TOPICS IN PURE AND COMPUTATIONAL COMPLEX ANALYSIS, 2014, : 21 - 46
  • [33] ON THE BOUNDARY BEHAVIOUR OF UNIVALENT HARMONIC MAPPINGS
    Bshouty, Daoud
    Lyzzaik, Abdallah
    Weitsman, Allen
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2012, 37 (01) : 135 - 147
  • [34] Rotations of convex harmonic univalent mappings
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    Le Anh Xuan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2019, 155 : 1 - 9
  • [35] Integral mean estimates for univalent and locally univalent harmonic mappings
    Das, Suman
    Kaliraj, Anbareeswaran Sairam
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2024, 67 (03): : 655 - 669
  • [36] ON SPHERICAL MAPPINGS IN A METRIC SPACE
    HU, ST
    ANNALS OF MATHEMATICS, 1947, 48 (03) : 717 - 734
  • [37] UNIVALENT HARMONIC MAPPINGS WITH TWO PREASSIGNED VALUES
    Gregorczyk, Magdalena
    DEMONSTRATIO MATHEMATICA, 2009, 42 (04) : 711 - 722
  • [38] Bohr radius for locally univalent harmonic mappings
    Kayumov, Ilgiz R.
    Ponnusamy, Saminathan
    Shakirov, Nail
    MATHEMATISCHE NACHRICHTEN, 2018, 291 (11-12) : 1757 - 1768
  • [39] Univalent harmonic mappings convex in one direction
    S. Ponnusamy
    A. Sairam Kaliraj
    Analysis and Mathematical Physics, 2014, 4 : 221 - 236
  • [40] Linear Combinations of a Class of Harmonic Univalent Mappings
    Long, Bo-Yong
    Dorff, Michael
    FILOMAT, 2018, 32 (09) : 3111 - 3121