The spherical metric and univalent harmonic mappings

被引:0
|
作者
Yusuf Abu Muhanna
Rosihan M. Ali
Saminathan Ponnusamy
机构
[1] American University of Sharjah,Department of Mathematics
[2] Universiti Sains Malaysia (USM),School of Mathematical Sciences
[3] Indian Institute of Technology Madras,Department of Mathematics
来源
关键词
Harmonic univalent map; Subordination; Spherical area; Hyperbolic metric; Hyperbolic domain; Modular function; Primary 30C35; Secondary 30C25; 30C45; 30F45; 31A05;
D O I
暂无
中图分类号
学科分类号
摘要
Let f=h+g¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f=h+\overline{g}$$\end{document} be a harmonic univalent map in the unit disk D\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {D}$$\end{document}, where h and g are analytic. This paper finds an improved estimate for the second coefficient of h. Indeed, this estimate is the first qualitative improvement since the appearance of the papers by Clunie and Sheil-Small (Ann Acad Sci Fenn Ser A I 9:3–25, 1984), and by Sheil-Small (J Lond Math Soc 42:237–248, 1990). When the sup-norm of the dilatation is less than 1, it is also shown that the spherical area of the covering surface of h is dominated by the spherical area of the covering surface of f.
引用
下载
收藏
页码:703 / 716
页数:13
相关论文
共 50 条
  • [21] Univalent harmonic mappings with Blaschke dilatations
    Bshouty, D
    Hengartner, W
    MATHEMATICS AND MATHEMATICS EDUCATION, 2002, : 82 - 89
  • [22] Univalent harmonic mappings and Hardy spaces
    Ebadian, Ali
    Azizi, Saman
    Yalcin, Sibel
    TURKISH JOURNAL OF MATHEMATICS, 2019, 43 (01) : 284 - 292
  • [23] On harmonic univalent mappings with nonzero pole
    Bhowmik, Bappaditya
    Majee, Santana
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (01)
  • [24] On the linear combinations of harmonic univalent mappings
    Wang, Zhi-Gang
    Liu, Zhi-Hong
    Li, Ying-Chun
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 400 (02) : 452 - 459
  • [25] Univalent σ-harmonic mappings:: Applications to composites
    Alessandrini, G
    Nesi, V
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2002, 7 (16) : 379 - 406
  • [26] On the Analytic Part of Univalent Harmonic Mappings
    Iigiz R. Kayumov
    Saminthan Ponnusamy
    Le Anh Xuan
    Complex Analysis and Operator Theory, 2018, 12 : 1291 - 1301
  • [27] UNIVALENT HARMONIC EXTERIOR AND RING MAPPINGS
    HENGARTNER, W
    SCHOBER, G
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 156 (01) : 154 - 171
  • [28] CONSTRUCTION OF SUBCLASSES OF UNIVALENT HARMONIC MAPPINGS
    Nagpal, Sumit
    Ravichandran, V.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (03) : 567 - 592
  • [29] CONSTRUCTION OF UNIVALENT HARMONIC MAPPINGS AND THEIR CONVOLUTIONS
    Singla, Chinu
    Gupta, Singh
    Singh, Sukhjit
    MATEMATICKI VESNIK, 2024, 76 (03): : 174 - 184
  • [30] On univalent harmonic mappings and minimal surfaces
    Weitsman, A
    PACIFIC JOURNAL OF MATHEMATICS, 2000, 192 (01) : 191 - 200