On odd univalent harmonic mappings

被引:0
|
作者
Jaglan, Kapil [1 ]
Kaliraj, Anbareeswaran Sairam [1 ]
机构
[1] Indian Inst Technol Ropar, Nangal Rd, Rupnagar 140001, Punjab, India
关键词
Odd univalent harmonic functions; Convex in one direction; Growth and distortion theorems; Hardy spaces; COEFFICIENTS; CONJECTURE;
D O I
10.1007/s13324-024-00964-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Odd univalent analytic functions played an instrumental role in the proof of the celebrated Bieberbach conjecture. In this article, we explore odd univalent harmonic mappings, focusing on coefficient estimates, growth and distortion theorems. Motivated by the unresolved harmonic analogue of the Bieberbach conjecture, we investigate specific subclasses of SH0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}<^>0_H$$\end{document}, the class of sense-preserving univalent harmonic functions. We provide sharp coefficient bounds for functions exhibiting convexity in one direction and extend our findings to a more generalized class including the major geometric subclasses of SH0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {S}}<^>0_H$$\end{document}. Additionally, we analyze the inclusion of these functions in Hardy spaces and broaden the range of p for which they belong. In particular, the results of this article enhance understanding and highlight analogous growth patterns between odd univalent harmonic functions and the harmonic Bieberbach conjecture. We conclude the article with 2 conjectures and possible scope for further study as well.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Univalent σ-harmonic mappings
    Alessandrini, G
    Nesi, V
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (02) : 155 - 171
  • [2] Univalent σ-Harmonic Mappings
    Giovanni Alessandrini
    Vincenzo Nesi
    [J]. Archive for Rational Mechanics and Analysis, 2001, 158 : 155 - 171
  • [3] Sections of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 527 - 540
  • [4] On the Shears of Univalent Harmonic Mappings
    M. Aydogan
    D. Bshouty
    A. Lyzzaik
    F. M. Sakar
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 2853 - 2862
  • [5] SLIT UNIVALENT HARMONIC MAPPINGS
    Grigoryan, Armen
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (01) : 169 - 187
  • [6] Coefficients of univalent harmonic mappings
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Victor V. Starkov
    [J]. Monatshefte für Mathematik, 2018, 186 : 453 - 470
  • [7] On the Shears of Univalent Harmonic Mappings
    Aydogan, M.
    Bshouty, D.
    Lyzzaik, A.
    Sakar, F. M.
    [J]. COMPLEX ANALYSIS AND OPERATOR THEORY, 2019, 13 (06) : 2853 - 2862
  • [8] Coefficients of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    [J]. MONATSHEFTE FUR MATHEMATIK, 2018, 186 (03): : 453 - 470
  • [9] Univalent σ-harmonic mappings:: Connections with quasiconformal mappings
    Alessandrini, G
    Nesi, V
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2003, 90 (1): : 197 - 215
  • [10] Univalent Σ-harmonic mappings: connections with quasiconformal mappings
    Giovanni Alessandrini
    Vincenzo Nesi
    [J]. Journal d’Analyse Mathématique, 2003, 90 : 197 - 215