Coefficients of univalent harmonic mappings

被引:9
|
作者
Ponnusamy, Saminathan [1 ]
Kaliraj, Anbareeswaran Sairam [1 ]
Starkov, Victor V. [2 ]
机构
[1] Indian Stat Inst ISI, Chennai Ctr, SETS, CIT Campus, Chennai 600113, Tamil Nadu, India
[2] Petrozavodsk State Univ, 33 Lenin Str, Petrozavodsk 185910, Republic Of Kar, Russia
来源
MONATSHEFTE FUR MATHEMATIK | 2018年 / 186卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
Harmonic functions; Harmonic univalent functions; Linear invariant family; Affine invariant family; Coefficient bounds; Partial sums;
D O I
10.1007/s00605-017-1038-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let denote the class of all functions that are sense-preserving, harmonic and univalent in the open unit disk . The coefficient conjecture for is still open even for . The aim of this paper is to show that if then and for all . Making use of these coefficient estimates, we also obtain radius of univalence of sections of univalent harmonic mappings.
引用
收藏
页码:453 / 470
页数:18
相关论文
共 50 条
  • [1] Coefficients of univalent harmonic mappings
    Saminathan Ponnusamy
    Anbareeswaran Sairam Kaliraj
    Victor V. Starkov
    [J]. Monatshefte für Mathematik, 2018, 186 : 453 - 470
  • [2] LINEAR COMBINATIONS OF UNIVALENT HARMONIC MAPPINGS WITH COMPLEX COEFFICIENTS
    Khurana, Deepali
    Kumar, Raj
    Gupta, Sushma
    Singh, Sukhjit
    [J]. MATEMATICKI VESNIK, 2022, 74 (03): : 189 - 196
  • [3] On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole
    Bappaditya Bhowmik
    Santana Majee
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2021, 52 : 1041 - 1053
  • [4] On the Coefficients of Certain Subclasses of Harmonic Univalent Mappings with Nonzero Pole
    Bhowmik, Bappaditya
    Majee, Santana
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2021, 52 (04): : 1041 - 1053
  • [5] Univalent σ-harmonic mappings
    Alessandrini, G
    Nesi, V
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2001, 158 (02) : 155 - 171
  • [6] Univalent σ-Harmonic Mappings
    Giovanni Alessandrini
    Vincenzo Nesi
    [J]. Archive for Rational Mechanics and Analysis, 2001, 158 : 155 - 171
  • [7] Univalent Harmonic and Biharmonic Mappings with Integer Coefficients in Complex Quadratic Fields
    Qiao, J.
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (04) : 1637 - 1646
  • [8] Univalent Harmonic and Biharmonic Mappings with Integer Coefficients in Complex Quadratic Fields
    J. Qiao
    [J]. Bulletin of the Malaysian Mathematical Sciences Society, 2016, 39 : 1637 - 1646
  • [9] Sections of univalent harmonic mappings
    Ponnusamy, Saminathan
    Kaliraj, Anbareeswaran Sairam
    Starkov, Victor V.
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (02): : 527 - 540
  • [10] On the Shears of Univalent Harmonic Mappings
    M. Aydogan
    D. Bshouty
    A. Lyzzaik
    F. M. Sakar
    [J]. Complex Analysis and Operator Theory, 2019, 13 : 2853 - 2862