On semiprime rings with multiplicative (generalized)-derivations

被引:2
|
作者
Khan S. [1 ]
机构
[1] Department of Mathematics, Aligarh Muslim University, Aligarh
关键词
Derivation; Generalized derivation; Left ideal; Multiplicative (generalized)-derivation; Multiplicative derivation; Semiprime ring;
D O I
10.1007/s13366-015-0241-y
中图分类号
学科分类号
摘要
Let (Formula presented.) be a semiprime ring. A mapping F : R (Formula presented.) R (not necessarily additive) is said to be a multiplicative (generalized)-derivation if (Formula presented.) holds for all (Formula presented.) , where (Formula presented.) is any map (not necessarily a derivation nor an additive). The objective of the present paper is to study the following situations (i) (Formula presented.) ; (ii) (Formula presented.) ; (iii) (Formula presented.) ; (iv) (Formula presented.) ; (v) (Formula presented.) ; (vi) (Formula presented.) , for all (Formula presented.) in some appropriate subsets of (Formula presented.). © 2015, The Managing Editors.
引用
收藏
页码:119 / 128
页数:9
相关论文
共 50 条
  • [41] Multiplicative (generalized)-derivations acting on left sided ideals with annihilator conditions in semiprime rings
    Ghosh, Sourav
    Dhara, Basudeb
    Sandhu, Gurninder S.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [42] Generalized derivations with nilpotent values in semiprime rings
    Liu, Cheng-Kai
    QUAESTIONES MATHEMATICAE, 2024, 47 (06) : 1195 - 1212
  • [43] Generalized derivations with nilpotent values on semiprime rings
    Wei, F
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (03) : 453 - 462
  • [44] On generalized derivations in semiprime rings involving anticommutator
    Ashraf, Mohammad
    Pary, Sajad Ahmad
    Raza, Mohd Arif
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2019, 60 (03): : 587 - 598
  • [45] ON GENERALIZED DERIVATIONS AND COMMUTATIVITY OF PRIME AND SEMIPRIME RINGS
    Ali, Asma
    Kumar, Deepak
    Miyan, Phool
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2011, 40 (03): : 367 - 374
  • [46] Generalized Derivations with Nilpotent Values on Semiprime Rings
    Feng WEI Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2004, 20 (03) : 453 - 462
  • [47] STUDY OF (σ, τ)-GENERALIZED DERIVATIONS WITH THEIR COMPOSITION OF SEMIPRIME RINGS
    Fosner, Ajda
    Atteya, Mehsin Jabel
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2019, 43 (04): : 535 - 558
  • [48] Generalized Derivations with Nilpotent Values on Semiprime Rings
    Feng Wei
    Acta Mathematica Sinica, 2004, 20 : 453 - 462
  • [49] Generalized Jordan triple (θ, φ)-derivations on semiprime rings
    Liu, Cheng-Kai
    Shiue, Wen-Kwei
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (05): : 1397 - 1406
  • [50] Generalized derivations on Lie ideals in semiprime rings
    Aboubakr A.
    González S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 841 - 850