On semiprime rings with multiplicative (generalized)-derivations

被引:2
|
作者
Khan S. [1 ]
机构
[1] Department of Mathematics, Aligarh Muslim University, Aligarh
关键词
Derivation; Generalized derivation; Left ideal; Multiplicative (generalized)-derivation; Multiplicative derivation; Semiprime ring;
D O I
10.1007/s13366-015-0241-y
中图分类号
学科分类号
摘要
Let (Formula presented.) be a semiprime ring. A mapping F : R (Formula presented.) R (not necessarily additive) is said to be a multiplicative (generalized)-derivation if (Formula presented.) holds for all (Formula presented.) , where (Formula presented.) is any map (not necessarily a derivation nor an additive). The objective of the present paper is to study the following situations (i) (Formula presented.) ; (ii) (Formula presented.) ; (iii) (Formula presented.) ; (iv) (Formula presented.) ; (v) (Formula presented.) ; (vi) (Formula presented.) , for all (Formula presented.) in some appropriate subsets of (Formula presented.). © 2015, The Managing Editors.
引用
收藏
页码:119 / 128
页数:9
相关论文
共 50 条
  • [21] Some identities related to multiplicative (generalized)-derivations in prime and semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Bera, Nripendu
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (02) : 1497 - 1516
  • [22] Some Identities Related to Semiprime Ideal of Rings with Multiplicative Generalized Derivations
    Hummdi, Ali Yahya
    Sogutcu, Emine Koc
    Golbasi, Oznur
    Rehman, Nadeem ur
    AXIOMS, 2024, 13 (10)
  • [23] On generalized (α, β)-derivations of semiprime rings
    Ali, Faisal
    Chaudhry, Muhammad Anwar
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 383 - 393
  • [24] Characterizing multiplicative (generalized)-derivations on semiprime rings satisfying specific functional identities
    Ul Huque, Inzamam
    Alnoghashi, Hafedh
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2025, 74 (01)
  • [25] Orthogonal generalized (σ, τ)-derivations of semiprime rings
    Golbasi, O.
    Aydin, N.
    SIBERIAN MATHEMATICAL JOURNAL, 2007, 48 (06) : 979 - 983
  • [26] IDENTITIES WITH GENERALIZED DERIVATIONS IN SEMIPRIME RINGS
    Dhara, Basudeb
    Ali, Shakir
    Pattanayak, Atanu
    DEMONSTRATIO MATHEMATICA, 2013, 46 (03) : 453 - 460
  • [27] ON GENERALIZED DERIVATIONS OF PRIME AND SEMIPRIME RINGS
    Huang, Shuliang
    TAIWANESE JOURNAL OF MATHEMATICS, 2012, 16 (02): : 771 - 776
  • [28] Generalized reverse derivations on semiprime rings
    A. Aboubakr
    S. González
    Siberian Mathematical Journal, 2015, 56 : 199 - 205
  • [29] A note on generalized derivations of semiprime rings
    Vukman, Joso
    TAIWANESE JOURNAL OF MATHEMATICS, 2007, 11 (02): : 367 - 370
  • [30] Generalized skew derivations on semiprime rings
    De Filippis, Vincenzo
    Di Vincenzo, Onofrio Mario
    LINEAR & MULTILINEAR ALGEBRA, 2015, 63 (05): : 927 - 939