On semiprime rings with multiplicative (generalized)-derivations

被引:2
|
作者
Khan S. [1 ]
机构
[1] Department of Mathematics, Aligarh Muslim University, Aligarh
关键词
Derivation; Generalized derivation; Left ideal; Multiplicative (generalized)-derivation; Multiplicative derivation; Semiprime ring;
D O I
10.1007/s13366-015-0241-y
中图分类号
学科分类号
摘要
Let (Formula presented.) be a semiprime ring. A mapping F : R (Formula presented.) R (not necessarily additive) is said to be a multiplicative (generalized)-derivation if (Formula presented.) holds for all (Formula presented.) , where (Formula presented.) is any map (not necessarily a derivation nor an additive). The objective of the present paper is to study the following situations (i) (Formula presented.) ; (ii) (Formula presented.) ; (iii) (Formula presented.) ; (iv) (Formula presented.) ; (v) (Formula presented.) ; (vi) (Formula presented.) , for all (Formula presented.) in some appropriate subsets of (Formula presented.). © 2015, The Managing Editors.
引用
收藏
页码:119 / 128
页数:9
相关论文
共 50 条
  • [31] Generalized derivations in prime and semiprime rings
    Huang, Shuliang
    Rehman, Nadeem ur
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2016, 34 (02): : 29 - 34
  • [32] GENERALIZED JORDAN DERIVATIONS ON SEMIPRIME RINGS
    Ferreira, Bruno L. M.
    Ferreira, Ruth N.
    Guzzo, Henrique, Jr.
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 109 (01) : 36 - 43
  • [33] Generalized reverse derivations on semiprime rings
    Aboubakr, A.
    Gonzalez, S.
    SIBERIAN MATHEMATICAL JOURNAL, 2015, 56 (02) : 199 - 205
  • [34] On centralizers and multiplicative generalized derivations of semiprime ring
    Shujat, Faiza
    Khan, Shahoor
    Ansari, Abu Zaid
    Italian Journal of Pure and Applied Mathematics, 2020, 44 : 224 - 228
  • [35] On generalized ()-derivations in semiprime rings with involution
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    MATHEMATICA SLOVACA, 2012, 62 (03) : 451 - 460
  • [36] ON COMMUTATIVITY OF SEMIPRIME RINGS WITH GENERALIZED DERIVATIONS
    Golbasi, Oznur
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2009, 40 (03): : 191 - 199
  • [37] On centralizers and multiplicative generalized derivations of semiprime ring
    Shujat, Faiza
    Khan, Shahoor
    Ansari, Abu Zaid
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2020, (44): : 229 - 237
  • [38] Orthogonal generalized (σ, τ)-derivations of semiprime rings
    Oznur Gölbaşi
    Neşet Aydin
    Siberian Mathematical Journal, 2007, 48 : 979 - 983
  • [39] Multiplicative (generalized) reverse derivations on semiprime ring
    Ali, Asma
    Bano, Ambreen
    EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, 11 (03): : 717 - 729
  • [40] Multiplicative (generalized)-derivation in semiprime rings
    Tiwari S.K.
    Sharma R.K.
    Dhara B.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (1): : 211 - 225