Generalized derivations on Lie ideals in semiprime rings

被引:0
|
作者
Aboubakr A. [1 ,2 ]
González S. [2 ]
机构
[1] Department of Mathematics, University of Fayoum, Faiyum
[2] Departamento de Matemáticas, Universidad de Oviedo, Oviedo
关键词
Derivation; Generalized derivation; Lie ideal; Semiprime ring;
D O I
10.1007/s13366-016-0297-3
中图分类号
学科分类号
摘要
Herstein (J Algebra 14:561–571, 1970) proved that given a semiprime 2-torsion free ring R and an inner derivation dt, if dt2(U)=0 for a Lie ideal U of R then dt(U) = 0. Carini (Rend Circ Mat Palermo 34:122–126, 1985) extended this result for an arbitrary derivation d, proving that d2(U) = 0 implies d(U) ⊆ Z(R). The aim of this paper is to extend the results mentioned above for right (resp. left) generalized derivations. Precisely, we prove that if R admits a right generalized derivation F associated with a derivation d such that F2(U) = (0) , then d3(U) = (0) and (d2(U))2=(0). Furthermore, if F is also a left generalized derivation on U, then d(U) = F(U) = (0) , and d(R) , F(R) ⊆ CR(U). On the other hand, if (F, d), (G, g) are, respectively, right and left generalized derivations that satisfy F(u) v= uG(v) for all u, v∈ U, then d(U) , g(U) ⊆ CR(U). © 2016, The Managing Editors.
引用
收藏
页码:841 / 850
页数:9
相关论文
共 50 条
  • [1] Lie Ideals and Generalized Derivations in Semiprime Rings
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 45 - 54
  • [2] ON LIE IDEALS AND DERIVATIONS OF SEMIPRIME RINGS
    AVRAAMOVA, OD
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (04): : 73 - 74
  • [3] Generalized derivations with nilpotent values on Lie ideals in semiprime rings
    Ammendolia, Francesco
    Scudo, Giovanni
    BEITRAGE ZUR ALGEBRA UND GEOMETRIE-CONTRIBUTIONS TO ALGEBRA AND GEOMETRY, 2024, 65 (03): : 727 - 743
  • [4] On Lie ideals with multiplicative (generalized)-derivations in prime and semiprime rings
    Ali S.
    Dhara B.
    Dar N.A.
    Khan A.N.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2015, 56 (1): : 325 - 337
  • [5] MULTIPLICATIVE GENERALIZED DERIVATIONS ON LIE IDEALS IN SEMIPRIME RINGS II
    Koc, Emine
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2017, 18 (01) : 265 - 276
  • [6] MULTIPLICATIVE GENERALIZED DERIVATIONS ON IDEALS IN SEMIPRIME RINGS
    Golbas, Oznur
    MATHEMATICA SLOVACA, 2016, 66 (06) : 1285 - 1296
  • [7] Multiplicative (generalized)-derivations and left ideals in semiprime rings
    Ali, Asma
    Dhara, Basudeb
    Khan, Shahoor
    Ali, Farhat
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1293 - 1306
  • [8] Left Ideals and Pair of Generalized Derivations in Semiprime Rings
    Ali, Asma
    Khan, Shahoor
    SOUTHEAST ASIAN BULLETIN OF MATHEMATICS, 2016, 40 (04) : 461 - 465
  • [9] Generalized derivations on Lie ideals in prime rings
    Golbasi, Oznur
    Koc, Emine
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (01) : 23 - 28
  • [10] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190