Generalized derivations on Lie ideals in semiprime rings

被引:0
|
作者
Aboubakr A. [1 ,2 ]
González S. [2 ]
机构
[1] Department of Mathematics, University of Fayoum, Faiyum
[2] Departamento de Matemáticas, Universidad de Oviedo, Oviedo
关键词
Derivation; Generalized derivation; Lie ideal; Semiprime ring;
D O I
10.1007/s13366-016-0297-3
中图分类号
学科分类号
摘要
Herstein (J Algebra 14:561–571, 1970) proved that given a semiprime 2-torsion free ring R and an inner derivation dt, if dt2(U)=0 for a Lie ideal U of R then dt(U) = 0. Carini (Rend Circ Mat Palermo 34:122–126, 1985) extended this result for an arbitrary derivation d, proving that d2(U) = 0 implies d(U) ⊆ Z(R). The aim of this paper is to extend the results mentioned above for right (resp. left) generalized derivations. Precisely, we prove that if R admits a right generalized derivation F associated with a derivation d such that F2(U) = (0) , then d3(U) = (0) and (d2(U))2=(0). Furthermore, if F is also a left generalized derivation on U, then d(U) = F(U) = (0) , and d(R) , F(R) ⊆ CR(U). On the other hand, if (F, d), (G, g) are, respectively, right and left generalized derivations that satisfy F(u) v= uG(v) for all u, v∈ U, then d(U) , g(U) ⊆ CR(U). © 2016, The Managing Editors.
引用
收藏
页码:841 / 850
页数:9
相关论文
共 50 条
  • [31] TWO GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS
    Pandey, Ashutosh
    Prajapati, Balchand
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 48 - 61
  • [32] NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS
    Dhara, Basudeb
    De Filippis, Vincenzo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) : 599 - 605
  • [33] A result on generalized derivations on Lie ideals in prime rings
    Dhara B.
    Kar S.
    Mondal S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 677 - 682
  • [34] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [35] Pair of Generalized Derivations and Lie Ideals in Prime Rings
    Dhara, Basudeb
    Ali, Asma
    Khan, Shahoor
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 351 - 362
  • [36] On Lie ideals and Jordan generalized derivations of prime rings
    Ashraf, M
    Nadeem-Ur-Rehman
    Ali, S
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2003, 34 (02): : 291 - 294
  • [37] Commutativity theorems on Lie ideals with symmetric bi-derivations in semiprime rings
    Sogutcu, Emine Koc
    Golbasi, Oznur
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (07)
  • [38] Orthogonality of two left and right generalized derivations on ideals in semiprime rings
    Aboubakr, Ahmed
    Gonzalez, Santos
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 611 - 620
  • [39] Pair of generalized derivations on Lie ideals in prime rings
    Pandey, Ashutosh
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (01)
  • [40] Generalized skew derivations on Lie ideals in prime rings
    Khan, Shahoor
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (01) : 219 - 225