On Lie ideals and Jordan generalized derivations of prime rings

被引:0
|
作者
Ashraf, M
Nadeem-Ur-Rehman
Ali, S
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
关键词
Lie ideals; prime rings; Jordan generalized derivations; generalized derivations; derivations; torsion free rings;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and S a nonempty subset of R. An additive mapping F: R --> R is called a generalized derivation (resp. Jordan generalized derivation) on S if there exists a derivation d: R --> R such that F(xy) = F(x)y+xd(y) (resp. F(x(2))=F(x)x+xd(x)) holds for all x, y is an element of S. Suppose that R is a 2-torsion free prime ring and U a nonzero Lie ideal of R such that u(2) is an element of U for all u is an element of U. In the present paper it is shown that if F is a Jordan generalized derivation on U, then F is a generalized derivation on U.
引用
收藏
页码:291 / 294
页数:4
相关论文
共 50 条
  • [1] On Lie Ideals and Generalized Jordan Left Derivations of Prime Rings
    N. Rehman
    A. Z. Ansari
    [J]. Ukrainian Mathematical Journal, 2014, 65 : 1247 - 1256
  • [2] On Lie Ideals and Generalized Jordan Left Derivations of Prime Rings
    Rehman, N.
    Ansari, A. Z.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2014, 65 (08) : 1247 - 1256
  • [3] On generalized derivations and Jordan ideals of prime rings
    Sandhu, Gurninder S.
    Davvaz, Bijan
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (01) : 227 - 233
  • [4] Generalized derivations on Jordan ideals in prime rings
    El-Soufi, Mahmmoud
    Aboubakr, Ahmed
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2014, 38 (02) : 233 - 239
  • [5] On generalized derivations and Jordan ideals of prime rings
    Gurninder S. Sandhu
    Bijan Davvaz
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 227 - 233
  • [6] Generalized derivations on Lie ideals in prime rings
    Golbasi, Oznur
    Koc, Emine
    [J]. TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (01) : 23 - 28
  • [7] Generalized derivations on Lie ideals in prime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Mondal, Sachhidananda
    [J]. CZECHOSLOVAK MATHEMATICAL JOURNAL, 2015, 65 (01) : 179 - 190
  • [8] Generalized derivations on Lie ideals in prime rings
    Basudeb Dhara
    Sukhendu Kar
    Sachhidananda Mondal
    [J]. Czechoslovak Mathematical Journal, 2015, 65 : 179 - 190
  • [9] On generalized (α,β)-derivations and Lie ideals of prime rings
    Sandhu, Gurninder S.
    Ali, Shakir
    Boua, Abdelkarim
    Kumar, Deepak
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2023, 72 (01) : 499 - 513
  • [10] On Lie ideals of *-prime rings with generalized derivations
    Rehman, Nadeem Ur
    Al-Omary, Radwan Mohammed
    Ansari, Abu Zaid
    [J]. BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2015, 21 (01): : 19 - 26