On Lie ideals and Jordan generalized derivations of prime rings

被引:0
|
作者
Ashraf, M
Nadeem-Ur-Rehman
Ali, S
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
关键词
Lie ideals; prime rings; Jordan generalized derivations; generalized derivations; derivations; torsion free rings;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be a ring and S a nonempty subset of R. An additive mapping F: R --> R is called a generalized derivation (resp. Jordan generalized derivation) on S if there exists a derivation d: R --> R such that F(xy) = F(x)y+xd(y) (resp. F(x(2))=F(x)x+xd(x)) holds for all x, y is an element of S. Suppose that R is a 2-torsion free prime ring and U a nonzero Lie ideal of R such that u(2) is an element of U for all u is an element of U. In the present paper it is shown that if F is a Jordan generalized derivation on U, then F is a generalized derivation on U.
引用
收藏
页码:291 / 294
页数:4
相关论文
共 50 条
  • [11] ON LIE IDEALS AND GENERALIZED DERIVATIONS OF *-PRIME RINGS
    Huang, Shuliang
    Golbasi, Oznur
    MISKOLC MATHEMATICAL NOTES, 2013, 14 (03) : 941 - 950
  • [12] Lie ideals and generalized (α, β)-derivations of *-prime rings
    Rehman N.U.
    AL-Omary R.M.
    Huang S.
    Afrika Matematika, 2013, 24 (4) : 503 - 510
  • [13] On Lie ideals and generalized (θ,φ)-derivations in prime rings
    Ashraf, M
    Ali, A
    Ali, S
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (08) : 2977 - 2985
  • [15] Generalized Derivations Commuting on Lie Ideals in Prime Rings
    Dhara B.
    Kar S.
    Kuila S.
    ANNALI DELL'UNIVERSITA' DI FERRARA, 2023, 69 (1) : 159 - 181
  • [16] A result on generalized derivations on Lie ideals in prime rings
    Dhara B.
    Kar S.
    Mondal S.
    Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2013, 54 (2): : 677 - 682
  • [17] Pair of Generalized Derivations and Lie Ideals in Prime Rings
    Dhara, Basudeb
    Ali, Asma
    Khan, Shahoor
    ALGEBRA AND ITS APPLICATIONS, ICAA 2014, 2016, 174 : 351 - 362
  • [18] TWO GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS
    Pandey, Ashutosh
    Prajapati, Balchand
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2023, 34 : 48 - 61
  • [19] NOTES ON GENERALIZED DERIVATIONS ON LIE IDEALS IN PRIME RINGS
    Dhara, Basudeb
    De Filippis, Vincenzo
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2009, 46 (03) : 599 - 605
  • [20] Generalized skew derivations on Lie ideals in prime rings
    Shahoor Khan
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 219 - 225