Generalized derivations on Lie ideals in semiprime rings

被引:0
|
作者
Aboubakr A. [1 ,2 ]
González S. [2 ]
机构
[1] Department of Mathematics, University of Fayoum, Faiyum
[2] Departamento de Matemáticas, Universidad de Oviedo, Oviedo
关键词
Derivation; Generalized derivation; Lie ideal; Semiprime ring;
D O I
10.1007/s13366-016-0297-3
中图分类号
学科分类号
摘要
Herstein (J Algebra 14:561–571, 1970) proved that given a semiprime 2-torsion free ring R and an inner derivation dt, if dt2(U)=0 for a Lie ideal U of R then dt(U) = 0. Carini (Rend Circ Mat Palermo 34:122–126, 1985) extended this result for an arbitrary derivation d, proving that d2(U) = 0 implies d(U) ⊆ Z(R). The aim of this paper is to extend the results mentioned above for right (resp. left) generalized derivations. Precisely, we prove that if R admits a right generalized derivation F associated with a derivation d such that F2(U) = (0) , then d3(U) = (0) and (d2(U))2=(0). Furthermore, if F is also a left generalized derivation on U, then d(U) = F(U) = (0) , and d(R) , F(R) ⊆ CR(U). On the other hand, if (F, d), (G, g) are, respectively, right and left generalized derivations that satisfy F(u) v= uG(v) for all u, v∈ U, then d(U) , g(U) ⊆ CR(U). © 2016, The Managing Editors.
引用
收藏
页码:841 / 850
页数:9
相关论文
共 50 条
  • [21] Note on Lie ideals with symmetric bi-derivations in semiprime rings
    Emine Koç Sögütcü
    Shuliang Huang
    Indian Journal of Pure and Applied Mathematics, 2023, 54 : 608 - 618
  • [22] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Kuila, Swarup
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 631 - 640
  • [23] Note on Lie ideals with symmetric bi-derivations in semiprime rings
    Sogutcu, Emine Koc
    Huang, Shuliang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (02): : 608 - 618
  • [24] Left ideals and derivations in semiprime rings
    Lanski, C
    JOURNAL OF ALGEBRA, 2004, 277 (02) : 658 - 667
  • [25] Semiprime Lie rings of derivations of commutative rings
    Liu, Chia-Hsin
    Groups, Rings and Algebras, 2006, 420 : 259 - 268
  • [26] On Semiprime Rings with Generalized Derivations
    Khan, Mohd Rais
    Hasnain, Mohammad Mueenul
    KYUNGPOOK MATHEMATICAL JOURNAL, 2013, 53 (04): : 565 - 571
  • [27] On Semiprime Rings with Generalized Derivations
    Ashraf, Mohammad
    Nadeem-ur-Rehman
    Ali, Shakir
    Mozumder, Muzibur Rahman
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2010, 28 (02): : 25 - 32
  • [28] GENERALIZED DERIVATIONS ON SEMIPRIME RINGS
    De Filippis, Vincenzo
    Huang, Shuliang
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2011, 48 (06) : 1253 - 1259
  • [29] On generalized (α, β)-derivations of semiprime rings
    Ali, Faisal
    Chaudhry, Muhammad Anwar
    TURKISH JOURNAL OF MATHEMATICS, 2011, 35 (03) : 383 - 393
  • [30] Orthogonality of two left and right generalized derivations on ideals in semiprime rings
    Ahmed Aboubakr
    Santos González
    Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 611 - 620