Left Ideals and Pair of Generalized Derivations in Semiprime Rings

被引:0
|
作者
Ali, Asma [1 ]
Khan, Shahoor [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Semiprime rings; Left ideals; Generalized derivations;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R be an n!-torsion free semiprime ring, and let F, G : R -> R be two generalized derivations of R. In this paper we will show that if the mapping F-2 + G is n-commuting (or n-skew-commuting) on a nonzero left ideal lambda of R, then either R contains a nonzero central ideal or lambda d(Z) subset of Z, where d is the derivation associated with F.
引用
收藏
页码:461 / 465
页数:5
相关论文
共 50 条
  • [1] Multiplicative (generalized)-derivations and left ideals in semiprime rings
    Ali, Asma
    Dhara, Basudeb
    Khan, Shahoor
    Ali, Farhat
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1293 - 1306
  • [2] Left ideals and derivations in semiprime rings
    Lanski, C
    [J]. JOURNAL OF ALGEBRA, 2004, 277 (02) : 658 - 667
  • [3] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Basudeb Dhara
    Sukhendu Kar
    Swarup Kuila
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 631 - 640
  • [4] NOTES ON LEFT IDEALS OF SEMIPRIME RINGS WITH MULTIPLICATIVE GENERALIZED (α, α) - DERIVATIONS
    Ulutas, Ercan
    Golbasi, Oznur
    [J]. FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (04): : 903 - 912
  • [5] A note on multiplicative (generalized)-derivations and left ideals in semiprime rings
    Dhara, Basudeb
    Kar, Sukhendu
    Kuila, Swarup
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2021, 70 (02) : 631 - 640
  • [6] Orthogonality of two left and right generalized derivations on ideals in semiprime rings
    Ahmed Aboubakr
    Santos González
    [J]. Rendiconti del Circolo Matematico di Palermo Series 2, 2019, 68 : 611 - 620
  • [7] MULTIPLICATIVE GENERALIZED DERIVATIONS ON IDEALS IN SEMIPRIME RINGS
    Golbas, Oznur
    [J]. MATHEMATICA SLOVACA, 2016, 66 (06) : 1285 - 1296
  • [8] Orthogonality of two left and right generalized derivations on ideals in semiprime rings
    Aboubakr, Ahmed
    Gonzalez, Santos
    [J]. RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2019, 68 (03) : 611 - 620
  • [9] Generalized derivations on Lie ideals in semiprime rings
    Aboubakr A.
    González S.
    [J]. Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2016, 57 (4): : 841 - 850
  • [10] Lie Ideals and Generalized Derivations in Semiprime Rings
    De Filippis, Vincenzo
    Rehman, Nadeem Ur
    Ansari, Abu Zaid
    [J]. IRANIAN JOURNAL OF MATHEMATICAL SCIENCES AND INFORMATICS, 2015, 10 (02): : 45 - 54