Saddle solutions for the Choquard equation with a general nonlinearity

被引:0
|
作者
Jiankang Xia
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
关键词
Choquard equation; Saddle solutions; Coxeter group; Nodal domains; 35A01; 35B08; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In the spirit of Berestycki and Lions (Arch. Rational Mech. Anal., 82: 313–345, 1983), we prove the existence of saddle-type nodal solutions for the Choquard equation -Δu+u=(Iα∗F(u))F′(u)inRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u + u= \big (I_\alpha *F(u)\big )F'(u)\qquad \text { in }\;\mathbb {R}^N \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} and Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha$$\end{document} is the Riesz potential of order α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}. Given a finite Coxeter group G with rank k≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le N$$\end{document}, we construct a G-groundstate uniformly with lowest energy amongst G-saddle solutions for the Choquard equation in a noncompact setting. Moreover, if F′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'$$\end{document} is odd and has constant sign on (0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,+\infty )$$\end{document}, then every G-groundstate maintains signed on the fundamental domain of the corresponding Coxeter group and receives opposite signs on any two adjacent regions so that nodal domains of G-groundstate are of cone shapes demonstrating Coxeter’s symmetric configurations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}. These results further complete the variational framework in constructing sign-changing solutions for the Choquard equation but still require a quadratic or super-quadratic growth on F near the origin.
引用
收藏
页码:463 / 493
页数:30
相关论文
共 50 条
  • [21] Normalized solution for fractional Choquard equation with potential and general nonlinearity
    Jin, Zhen-Feng
    Sun, Hong-Rui
    Zhang, Jianjun
    Zhang, Weimin
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024, 69 (07) : 1117 - 1133
  • [22] On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity
    Liao, Fangfang
    Chen, Fulai
    Geng, Shifeng
    Liu, Dong
    BOUNDARY VALUE PROBLEMS, 2023, 2023 (01)
  • [23] Solutions to a modified gauged Schrodinger equation with Choquard type nonlinearity
    Xiao, Yingying
    Qiu, Yipeng
    Xie, Li
    Zhu, Wenjie
    OPEN MATHEMATICS, 2023, 21 (01):
  • [24] On nonlinear fractional Choquard equation with indefinite potential and general nonlinearity
    Fangfang Liao
    Fulai Chen
    Shifeng Geng
    Dong Liu
    Boundary Value Problems, 2023
  • [25] Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity
    Cassani, Daniele
    Du, Lele
    Liu, Zhisu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 241
  • [26] MULTIPLE SOLUTIONS FOR A BIBARMONIC ELLIPTIC EQUATION WITH CRITICAL CHOQUARD TYPE NONLINEARITY
    Lei, Chunyu
    Lei, Jun
    Suo, Hongmin
    QUAESTIONES MATHEMATICAE, 2025, 48 (01) : 121 - 141
  • [27] Sign-changing solutions for a fractional Choquard equation with power nonlinearity
    Zhao, Shunneng
    Yu, Yuanyang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [28] Ground States Solutions for a Modified Fractional Schrodinger Equation with a Generalized Choquard Nonlinearity
    Dehsari, I
    Nyamoradi, N.
    JOURNAL OF CONTEMPORARY MATHEMATICAL ANALYSIS-ARMENIAN ACADEMY OF SCIENCES, 2022, 57 (03): : 131 - 144
  • [29] Existence of normalized solutions to Choquard equation with general mixed nonlinearities
    Zhu, Meiling
    Li, Xinfu
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2024,
  • [30] Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity
    Chen, Sitong
    Tang, Xianhua
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)