Saddle solutions for the Choquard equation with a general nonlinearity

被引:0
|
作者
Jiankang Xia
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
关键词
Choquard equation; Saddle solutions; Coxeter group; Nodal domains; 35A01; 35B08; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In the spirit of Berestycki and Lions (Arch. Rational Mech. Anal., 82: 313–345, 1983), we prove the existence of saddle-type nodal solutions for the Choquard equation -Δu+u=(Iα∗F(u))F′(u)inRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u + u= \big (I_\alpha *F(u)\big )F'(u)\qquad \text { in }\;\mathbb {R}^N \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} and Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha$$\end{document} is the Riesz potential of order α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}. Given a finite Coxeter group G with rank k≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le N$$\end{document}, we construct a G-groundstate uniformly with lowest energy amongst G-saddle solutions for the Choquard equation in a noncompact setting. Moreover, if F′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'$$\end{document} is odd and has constant sign on (0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,+\infty )$$\end{document}, then every G-groundstate maintains signed on the fundamental domain of the corresponding Coxeter group and receives opposite signs on any two adjacent regions so that nodal domains of G-groundstate are of cone shapes demonstrating Coxeter’s symmetric configurations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}. These results further complete the variational framework in constructing sign-changing solutions for the Choquard equation but still require a quadratic or super-quadratic growth on F near the origin.
引用
收藏
页码:463 / 493
页数:30
相关论文
共 50 条
  • [31] Ground state solutions for general Choquard equations with a variable potential and a local nonlinearity
    Sitong Chen
    Xianhua Tang
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [32] Ground States Solutions for a Modified Fractional Schrödinger Equation with a Generalized Choquard Nonlinearity
    I. Dehsari
    N. Nyamoradi
    Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 2022, 57 : 131 - 144
  • [33] Nodal solutions for the Choquard equation
    Ghimenti, Marco
    Van Schaftingen, Jean
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (01) : 107 - 135
  • [34] Nodal solutions for Kirchhoff equations with Choquard nonlinearity
    Wenjing Chen
    Ting Zhou
    Journal of Fixed Point Theory and Applications, 2022, 24
  • [35] Multiple solutions of the Choquard equation
    Zhang, XJ
    DIFFERENTIAL EQUATIONS AND CONTROL THEORY, 1996, 176 : 477 - 482
  • [36] NORMALIZED SOLUTIONS FOR KIRCHHOFF EQUATIONS WITH CHOQUARD NONLINEARITY
    Wang, Zhi-Jie
    Sun, Hong-Rui
    Liu, Jianlun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2025, 45 (04) : 1335 - 1365
  • [37] Existence of ground state solutions for quasilinear Schrodinger equations with general Choquard type nonlinearity
    He, Yu-bo
    Zhou, Jue-liang
    Lin, Xiao-yan
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [38] Nodal solutions for Kirchhoff equations with Choquard nonlinearity
    Chen, Wenjing
    Zhou, Ting
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2022, 24 (01)
  • [39] THE CHOQUARD LOGARITHMIC EQUATION INVOLVING A NONLINEARITY WITH EXPONENTIAL GROWTH
    Boer, Eduardo de S.
    Miyagaki, Olimpio H.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2022, 60 (01) : 363 - 385
  • [40] Existence of ground state solutions for quasilinear Schrödinger equations with general Choquard type nonlinearity
    Yu-bo He
    Jue-liang Zhou
    Xiao-yan Lin
    Boundary Value Problems, 2020