Saddle solutions for the Choquard equation with a general nonlinearity

被引:0
|
作者
Jiankang Xia
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
关键词
Choquard equation; Saddle solutions; Coxeter group; Nodal domains; 35A01; 35B08; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In the spirit of Berestycki and Lions (Arch. Rational Mech. Anal., 82: 313–345, 1983), we prove the existence of saddle-type nodal solutions for the Choquard equation -Δu+u=(Iα∗F(u))F′(u)inRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u + u= \big (I_\alpha *F(u)\big )F'(u)\qquad \text { in }\;\mathbb {R}^N \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} and Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha$$\end{document} is the Riesz potential of order α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}. Given a finite Coxeter group G with rank k≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le N$$\end{document}, we construct a G-groundstate uniformly with lowest energy amongst G-saddle solutions for the Choquard equation in a noncompact setting. Moreover, if F′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'$$\end{document} is odd and has constant sign on (0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,+\infty )$$\end{document}, then every G-groundstate maintains signed on the fundamental domain of the corresponding Coxeter group and receives opposite signs on any two adjacent regions so that nodal domains of G-groundstate are of cone shapes demonstrating Coxeter’s symmetric configurations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}. These results further complete the variational framework in constructing sign-changing solutions for the Choquard equation but still require a quadratic or super-quadratic growth on F near the origin.
引用
收藏
页码:463 / 493
页数:30
相关论文
共 50 条
  • [41] HIGH ENERGY SOLUTIONS OF THE CHOQUARD EQUATION
    Cao, Daomin
    Li, Hang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (06) : 3023 - 3032
  • [42] Nodal solutions for a fractional Choquard equation
    Zhang, Wei
    Wu, Xian
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1167 - 1183
  • [43] Ground states and multiple solutions for Choquard-Pekar equations with indefinite potential and general nonlinearity
    Qin, Dongdong
    Lai, Lizhen
    Yuan, Shuai
    Wu, Qingfang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
  • [44] STABLE SOLUTIONS TO THE STATIC CHOQUARD EQUATION
    Le, Phuong
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 102 (03) : 471 - 478
  • [45] MULTIBUMP SOLUTIONS FOR CRITICAL CHOQUARD EQUATION
    Xia, Jiankang
    Zhang, Xu
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (03) : 3832 - 3860
  • [46] SEMICLASSICAL NODAL SOLUTIONS FOR THE CHOQUARD EQUATION
    Shen, Zifei
    Yang, Minbo
    Ye, Weiwei
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (9-10) : 775 - 812
  • [47] Multiple solutions of the quasirelativistic Choquard equation
    Melgaard, M.
    Zongo, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (03)
  • [48] On nodal solutions of the fractional Choquard equation
    Cui, Ying-Xin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 500 (02)
  • [49] On Nodal Solutions of the Nonlinear Choquard Equation
    Gui, Changfeng
    Guo, Hui
    ADVANCED NONLINEAR STUDIES, 2019, 19 (04) : 677 - 691
  • [50] Ground state for Choquard equation with doubly critical growth nonlinearity
    Li, Fuyi
    Long, Lei
    Huang, Yongyan
    Liang, Zhanping
    ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2019, (33) : 1 - 15