Solutions to a modified gauged Schrodinger equation with Choquard type nonlinearity

被引:0
|
作者
Xiao, Yingying [1 ]
Qiu, Yipeng [1 ]
Xie, Li [2 ]
Zhu, Wenjie [3 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
[2] Nanchang JiaoTong Inst, Nanchang, Jiangxi, Peoples R China
[3] Anhui Inst Informat Technol, Wuhu 241000, Anhui, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
Chern-Simons-Schrodinger equations; Choquard type nonlinearity; ground state solution; monotone trick; MULTIPLE SOLUTIONS; STANDING WAVES; EXISTENCE;
D O I
10.1515/math-2022-0557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the following quasilinear Schrodinger equation: h x 2(||)-delta u+ V(|x|)u- kappa u delta(u(2))+q h(2)(|x|)/|x(2)|( 1+ku(2)u+q(integral(+infinity)(|x|) h(s)/s(2+ku(2)(s)( )u(2)(s)ds)u=(Ia*|u|p)|u|(p-2)u, x is an element of R(2)where kappa , q > 0, p > 8, I(alpha)is a Riesz potential, alpha is an element of (0, 2)and V is an element of C(R2 , R). By using Jeanjean's monotone trick, it can be explored that the aforementioned equation has a ground state solution under appropriate assumptions.
引用
收藏
页数:9
相关论文
共 50 条