Saddle solutions for the Choquard equation with a general nonlinearity

被引:0
|
作者
Jiankang Xia
机构
[1] Northwestern Polytechnical University,School of Mathematics and Statistics
关键词
Choquard equation; Saddle solutions; Coxeter group; Nodal domains; 35A01; 35B08; 35J20; 35J60;
D O I
暂无
中图分类号
学科分类号
摘要
In the spirit of Berestycki and Lions (Arch. Rational Mech. Anal., 82: 313–345, 1983), we prove the existence of saddle-type nodal solutions for the Choquard equation -Δu+u=(Iα∗F(u))F′(u)inRN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} -\Delta u + u= \big (I_\alpha *F(u)\big )F'(u)\qquad \text { in }\;\mathbb {R}^N \end{aligned}$$\end{document}where N≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N\ge 2$$\end{document} and Iα\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$I_\alpha$$\end{document} is the Riesz potential of order α∈(0,N)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in (0,N)$$\end{document}. Given a finite Coxeter group G with rank k≤N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k\le N$$\end{document}, we construct a G-groundstate uniformly with lowest energy amongst G-saddle solutions for the Choquard equation in a noncompact setting. Moreover, if F′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F'$$\end{document} is odd and has constant sign on (0,+∞)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(0,+\infty )$$\end{document}, then every G-groundstate maintains signed on the fundamental domain of the corresponding Coxeter group and receives opposite signs on any two adjacent regions so that nodal domains of G-groundstate are of cone shapes demonstrating Coxeter’s symmetric configurations in RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^N$$\end{document}. These results further complete the variational framework in constructing sign-changing solutions for the Choquard equation but still require a quadratic or super-quadratic growth on F near the origin.
引用
收藏
页码:463 / 493
页数:30
相关论文
共 50 条
  • [1] Saddle solutions for the Choquard equation with a general nonlinearity
    Xia, Jiankang
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2023, 202 (01) : 463 - 493
  • [2] Saddle solutions for the Choquard equation
    Xia, Jiankang
    Wang, Zhi-Qiang
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)
  • [3] Saddle solutions for the Choquard equation
    Jiankang Xia
    Zhi-Qiang Wang
    Calculus of Variations and Partial Differential Equations, 2019, 58
  • [4] Saddle solutions for the fractional Choquard equation
    Ying-Xin Cui
    Jiankang Xia
    Zeitschrift für angewandte Mathematik und Physik, 2022, 73
  • [5] Saddle solutions for the critical Choquard equation
    Xia, Jiankang
    Zhang, Xu
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [6] Saddle solutions for the fractional Choquard equation
    Cui, Ying-Xin
    Xia, Jiankang
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (02):
  • [7] Saddle solutions for the Choquard equation II
    Wang, Zhi-Qiang
    Xia, Jiankang
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 201
  • [8] Saddle solutions for the critical Choquard equation
    Jiankang Xia
    Xu Zhang
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [9] Ground state solutions for a (p, q)-Choquard equation with a general nonlinearity
    Ambrosio, Vincenzo
    Isernia, Teresa
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 401 : 428 - 468
  • [10] Infinitely many radial and nonradial solutions for a Choquard equation with general nonlinearity
    Zhang, Hui
    Zhang, Fubao
    APPLIED MATHEMATICS LETTERS, 2020, 102