Solutions to a modified gauged Schrodinger equation with Choquard type nonlinearity

被引:0
|
作者
Xiao, Yingying [1 ]
Qiu, Yipeng [1 ]
Xie, Li [2 ]
Zhu, Wenjie [3 ]
机构
[1] Jiangxi Sci & Technol Normal Univ, Sch Math & Comp Sci, Nanchang 330038, Jiangxi, Peoples R China
[2] Nanchang JiaoTong Inst, Nanchang, Jiangxi, Peoples R China
[3] Anhui Inst Informat Technol, Wuhu 241000, Anhui, Peoples R China
来源
OPEN MATHEMATICS | 2023年 / 21卷 / 01期
基金
中国国家自然科学基金;
关键词
Chern-Simons-Schrodinger equations; Choquard type nonlinearity; ground state solution; monotone trick; MULTIPLE SOLUTIONS; STANDING WAVES; EXISTENCE;
D O I
10.1515/math-2022-0557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the following quasilinear Schrodinger equation: h x 2(||)-delta u+ V(|x|)u- kappa u delta(u(2))+q h(2)(|x|)/|x(2)|( 1+ku(2)u+q(integral(+infinity)(|x|) h(s)/s(2+ku(2)(s)( )u(2)(s)ds)u=(Ia*|u|p)|u|(p-2)u, x is an element of R(2)where kappa , q > 0, p > 8, I(alpha)is a Riesz potential, alpha is an element of (0, 2)and V is an element of C(R2 , R). By using Jeanjean's monotone trick, it can be explored that the aforementioned equation has a ground state solution under appropriate assumptions.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Infinitely many solutions for a gauged nonlinear Schrodinger equation
    Zhang, Jian
    Zhang, Wen
    Xie, Xiaoliang
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 21 - 27
  • [22] Asymptotics of solutions to the fourth order Schrodinger type equation with a dissipative nonlinearity
    Segata, Jun-ichi
    Shimomura, Akihiro
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (02): : 439 - 456
  • [23] STATIONARY SOLUTIONS TO THE GAUGED NONLINEAR SCHRODINGER-EQUATION
    CHO, KH
    OH, DH
    RIM, CH
    PHYSICAL REVIEW D, 1992, 46 (06): : 2709 - 2713
  • [24] The Schrodinger Equation with a Mixed Type Nonlinearity
    Venkov, George
    APPLICATIONS OF MATHEMATICS IN ENGINEERING AND ECONOMICS (AMEE '09), 2009, 1184 : 169 - 176
  • [25] SCHRODINGER EQUATION WITH NONLINEARITY OF INTEGRAL TYPE
    BAILLON, JB
    CAZENAVE, T
    FIGUEIRA, M
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1977, 284 (16): : 939 - 942
  • [26] Positive solutions to the planar logarithmic Choquard equation with exponential nonlinearity
    Cassani, Daniele
    Du, Lele
    Liu, Zhisu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2024, 241
  • [27] Positive solutions of a Schrodinger equation with critical nonlinearity
    Clapp, M
    Ding, YH
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2004, 55 (04): : 592 - 605
  • [28] Multiple normalized solutions for a planar gauged nonlinear Schrodinger equation
    Luo, Xiao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (03):
  • [29] Sign-changing solutions to a gauged nonlinear Schrodinger equation
    Li, Gongbao
    Luo, Xiao
    Shuai, Wei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 455 (02) : 1559 - 1578
  • [30] Concentration behavior and multiplicity of solutions to a gauged nonlinear Schrodinger equation
    Zhang, Wen
    Mi, Heilong
    Liao, Fangfang
    APPLIED MATHEMATICS LETTERS, 2020, 107 (107)