Stabilization and Control for the Biharmonic Schrödinger Equation

被引:0
|
作者
Roberto A. Capistrano–Filho
Márcio Cavalcante
机构
[1] Universidade Federal de Pernambuco (UFPE),Departamento de Matemática
[2] Universidade Federal de Alagoas (UFAL),Instituto de Matemática
来源
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrödinger; Propagation of compactness; Propagation of regularity; Stabilization; Primary 35Q55; Secondary 93B05; 93D15; 35A21;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrödinger system on a periodic domain T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} with internal control supported on an arbitrary sub-domain of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrödinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:41
相关论文
共 50 条
  • [21] Coupled linear Schrödinger equations: control and stabilization results
    Bhandari, K.
    Capistrano-Filho, R. de A.
    Majumdar, S.
    Tanaka, T. Y.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [22] Stabilization of One-Dimensional Schrödinger Equation Under Joint Feedback Control with Delayed Observation
    K. Y. Yang
    Journal of Dynamical and Control Systems, 2019, 25 : 275 - 288
  • [23] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [24] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [25] Boundary Output Feedback Stabilization of the Linearized Schrödinger Equation with Nonlocal Term
    Liping Wang
    Feng-Fei Jin
    International Journal of Control, Automation and Systems, 2021, 19 : 1528 - 1538
  • [26] The Stability of Schrdinger Equation with Boundary Control Matched Disturbance
    ZHANG Xiaoying
    CHAI Shugen
    JournalofSystemsScience&Complexity, 2017, 30 (06) : 1258 - 1269
  • [27] The stability of Schrödinger equation with boundary control matched disturbance
    Xiaoying Zhang
    Shugen Chai
    Journal of Systems Science and Complexity, 2017, 30 : 1258 - 1269
  • [28] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [29] Pseudorandomness of the Schrödinger Map Equation
    Kumar, Sandeep
    ACTA APPLICANDAE MATHEMATICAE, 2024, 193 (01)
  • [30] Lorentz transformations for the schrödinger equation
    Shtelen V.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 480 - 481