A unique behaviour of the Schr & ouml;dinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schr & ouml;dinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.
机构:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico, D.F.Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico, D.F.
Cetto A.M.
la Peña L.
论文数: 0引用数: 0
h-index: 0
机构:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico, D.F.Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico, D.F.
la Peña L.
Valdés-Hernández A.
论文数: 0引用数: 0
h-index: 0
机构:
Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico, D.F.Instituto de Física, Universidad Nacional Autónoma de México, A.P. 20-364, Mexico, D.F.
机构:
Ctr Brasileiro Pesquisas Fis CBPF, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, BrazilCtr Brasileiro Pesquisas Fis CBPF, Rua Dr Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil