Pseudorandomness of the Schrödinger Map Equation

被引:1
|
作者
Kumar, Sandeep [1 ]
机构
[1] CUNEF Univ, Dept Math, Madrid, Spain
关键词
Schr & ouml; dinger map equation; Rotation matrices; Hyperbolic space; Pseudorandom numbers; VORTEX FILAMENT EQUATION; FLOW; NLS;
D O I
10.1007/s10440-024-00687-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unique behaviour of the Schr & ouml;dinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schr & ouml;dinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Steady solutions for the Schrödinger map equation
    Garcia, Claudia
    Vega, Luis
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2024, 49 (5-6) : 505 - 542
  • [2] Multivortex traveling waves for the Schrödinger map equation
    Guo, Tianpei
    JOURNAL OF MATHEMATICAL PHYSICS, 2024, 65 (05)
  • [3] Self-similar solutions for the Schrödinger map equation
    Pierre Germain
    Jalal Shatah
    Chongchun Zeng
    Mathematische Zeitschrift, 2010, 264 : 697 - 707
  • [4] An Integrable Symplectic Map Related to Discrete Nonlinear Schrdinger Equation
    赵静
    周汝光
    CommunicationsinTheoreticalPhysics, 2010, 53 (05) : 799 - 802
  • [5] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [6] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [7] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)
  • [8] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [9] Lorentz transformations for the schrödinger equation
    Shtelen V.
    Journal of Nonlinear Mathematical Physics, 1997, 4 (3-4) : 480 - 481
  • [10] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445