Pseudorandomness of the Schrödinger Map Equation

被引:1
|
作者
Kumar, Sandeep [1 ]
机构
[1] CUNEF Univ, Dept Math, Madrid, Spain
关键词
Schr & ouml; dinger map equation; Rotation matrices; Hyperbolic space; Pseudorandom numbers; VORTEX FILAMENT EQUATION; FLOW; NLS;
D O I
10.1007/s10440-024-00687-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unique behaviour of the Schr & ouml;dinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schr & ouml;dinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [42] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [43] Radial Schrödinger equation: The spectral problem
    O. S. Pavlova
    A. R. Frenkin
    Theoretical and Mathematical Physics, 2000, 125 : 1506 - 1515
  • [44] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [45] On the quaternionic form of the Pauli?Schr;dinger equation
    Cahay, M.
    Morris, D.
    PHYSICA SCRIPTA, 2020, 95 (01)
  • [46] Derivation of the Schrödinger equation from QED
    Efthimiades, Spyros
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (03)
  • [47] Darboux transformations for the generalized Schrödinger equation
    A. A. Suzko
    G. Giorgadze
    Physics of Atomic Nuclei, 2007, 70 : 607 - 610
  • [48] Dispersive Estimates of Solutions to the Schrödinger Equation
    Georgi Vodev
    Annales Henri Poincaré, 2005, 6 : 1179 - 1196
  • [49] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559
  • [50] On a class of nonlinear inhomogeneous Schrödinger equation
    Chen J.
    Journal of Applied Mathematics and Computing, 2010, 32 (01) : 237 - 253