Pseudorandomness of the Schrödinger Map Equation

被引:1
|
作者
Kumar, Sandeep [1 ]
机构
[1] CUNEF Univ, Dept Math, Madrid, Spain
关键词
Schr & ouml; dinger map equation; Rotation matrices; Hyperbolic space; Pseudorandom numbers; VORTEX FILAMENT EQUATION; FLOW; NLS;
D O I
10.1007/s10440-024-00687-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unique behaviour of the Schr & ouml;dinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schr & ouml;dinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Schrödinger-type identity to the existence and uniqueness of a solution to the stationary Schrödinger equation
    Delin Sun
    Boundary Value Problems, 2019
  • [32] Energy decay rate of multidimensional inhomogeneous Landau–Lifshitz–Gilbert equation and Schrödinger map equation on the sphere
    Penghong Zhong
    Chao Zhang
    Fengong Wu
    Advances in Difference Equations, 2018
  • [33] Asymptotic behaviors for the eigenvalues of the Schrödinger equation
    Saidani, Siwar
    Jawahdou, Adel
    APPLICABLE ANALYSIS, 2024, 103 (16) : 2909 - 2922
  • [34] A NONLINEAR SCHR?DINGER EQUATION WITH COULOMB POTENTIAL
    苗长兴
    张军勇
    郑继强
    Acta Mathematica Scientia, 2022, 42 (06) : 2230 - 2256
  • [35] Solutions of the Schrödinger equation in a Hilbert space
    Alexander Boichuk
    Oleksander Pokutnyi
    Boundary Value Problems, 2014
  • [36] A nonlinear Schrödinger equation with Coulomb potential
    Changxing Miao
    Junyong Zhang
    Jiqiang Zheng
    Acta Mathematica Scientia, 2022, 42 : 2230 - 2256
  • [37] On a Schrödinger Equation in the Complex Space Variable
    Esquivel, Manuel L.
    Krasii, Nadezhda P.
    Didier, Philippe L.
    APPLIEDMATH, 2024, 4 (04): : 1555 - 1587
  • [38] Complex cooridinate scaling and the Schrödinger equation
    R. J. Buenker
    Russian Journal of Physical Chemistry B, 2014, 8 : 14 - 21
  • [39] Effective Approximation for the Semiclassical Schrödinger Equation
    Philipp Bader
    Arieh Iserles
    Karolina Kropielnicka
    Pranav Singh
    Foundations of Computational Mathematics, 2014, 14 : 689 - 720
  • [40] The Vacuum Electromagnetic Fields and the Schrödinger Equation
    A. J. Faria
    H. M. França
    G. G. Gomes
    R. C. Sponchiado
    Foundations of Physics, 2007, 37 : 1296 - 1305