The Vacuum Electromagnetic Fields and the Schrödinger Equation

被引:0
|
作者
A. J. Faria
H. M. França
G. G. Gomes
R. C. Sponchiado
机构
[1] Universidade de São Paulo,Instituto de Física
来源
Foundations of Physics | 2007年 / 37卷
关键词
Foundations of quantum mechanics; Zero-point radiation; Thermal radiation; Stochastic electrodynamics; Quantum electrodynamics;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the simple case of a nonrelativistic charged harmonic oscillator in one dimension, to investigate how to take into account the radiation reaction and vacuum fluctuation forces within the Schrödinger equation. The effects of both zero-point and thermal classical electromagnetic vacuum fields, characteristic of stochastic electrodynamics, are separately considered. Our study confirms that the zero-point electromagnetic fluctuations are dynamically related to the momentum operator p=−iℏ∂/∂x used in the Schrödinger equation.
引用
收藏
页码:1296 / 1305
页数:9
相关论文
共 50 条
  • [1] Multiplicity of solutions of perturbed Schrödinger equation with electromagnetic fields and critical nonlinearity in RN
    Sihua Liang
    Yueqiang Song
    Boundary Value Problems, 2014
  • [2] Least energy solutions for semilinear Schrödinger equation with electromagnetic fields and critical growth
    ZhongWei Tang
    YanLi Wang
    Science China Mathematics, 2015, 58 : 2317 - 2328
  • [3] Least energy solutions for semilinear Schrdinger equation with electromagnetic fields and critical growth
    TANG ZhongWei
    WANG YanLi
    ScienceChina(Mathematics), 2015, 58 (11) : 2317 - 2328
  • [4] Existence Results for Nonlinear Schrödinger Equations With Electromagnetic Fields
    J. Chabrowski
    Monatshefte für Mathematik, 2002, 137 : 261 - 272
  • [5] Semiclassical states for the nonlinear Schrödinger equation with the electromagnetic field
    Teresa D’aprile
    Nonlinear Differential Equations and Applications NoDEA, 2007, 13 : 655 - 681
  • [6] The vacuum electromagnetic fields and the Schrodinger equation
    Faria, A. J.
    Franca, H. M.
    Gomes, G. G.
    Sponchiado, R. C.
    FOUNDATIONS OF PHYSICS, 2007, 37 (08) : 1296 - 1305
  • [7] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [8] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [9] GROUND STATES FOR FRACTIONAL SCHR?DINGER EQUATIONS WITH ELECTROMAGNETIC FIELDS AND CRITICAL GROWTH
    李全清
    王文波
    滕凯民
    吴鲜
    ActaMathematicaScientia, 2020, 40 (01) : 59 - 74
  • [10] Ground States for Fractional Schrödinger Equations with Electromagnetic Fields and Critical Growth
    Quanqing Li
    Wenbo Wang
    Kaimin Teng
    Xian Wu
    Acta Mathematica Scientia, 2020, 40 : 59 - 74