Pseudorandomness of the Schrödinger Map Equation

被引:1
|
作者
Kumar, Sandeep [1 ]
机构
[1] CUNEF Univ, Dept Math, Madrid, Spain
关键词
Schr & ouml; dinger map equation; Rotation matrices; Hyperbolic space; Pseudorandom numbers; VORTEX FILAMENT EQUATION; FLOW; NLS;
D O I
10.1007/s10440-024-00687-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A unique behaviour of the Schr & ouml;dinger map equation, a geometric partial differential equation, is presented by considering its evolution for regular polygonal curves in both Euclidean and hyperbolic spaces. The results are consistent with those for the vortex filament equation, an equivalent form of the Schr & ouml;dinger map equation in the Euclidean space. Thus, with all possible choices of regular polygons in a given setting, our analysis not only provides a novel extension to its usefulness as a pseudorandom number generator but also complements the existing results.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [22] An asymptotic expression of the Schrödinger equation
    Zhaosheng Feng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 363 - 375
  • [23] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [24] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [25] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [26] Schrödinger Equation for An Extended Electron
    Antônio B. Nassar
    International Journal of Theoretical Physics, 2007, 46 : 548 - 552
  • [27] Schrödinger Equation in Moving Domains
    Alessandro Duca
    Romain Joly
    Annales Henri Poincaré, 2021, 22 : 2029 - 2063
  • [28] Lagrangian form of Schrödinger equation
    D. Arsenović
    N. Burić
    D. M. Davidović
    S. Prvanović
    Foundations of Physics, 2014, 44 : 725 - 735
  • [29] Canonical averaging of the Schrödinger equation
    A. G. Chirkov
    Technical Physics, 2002, 47 : 275 - 277
  • [30] General Solution of the Schrödinger Equation
    Sergeenko, M. N.
    PHYSICS OF PARTICLES AND NUCLEI, 2024, 55 (06) : 1506 - 1510