Canonical averaging of the Schrödinger equation

被引:0
|
作者
A. G. Chirkov
机构
[1] St. Petersburg State Technical University,
来源
Technical Physics | 2002年 / 47卷
关键词
Quantum Mechanic; Perturbation Theory; Approximate Solution; Hamiltonian System; Canonical Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The representation of the Schrödinger equation in the form of a classical Hamiltonian system makes it possible to construct a unified perturbation theory that is based on the theory of canonical transformations and covers both classical and quantum mechanics. Also, the closeness of the exact and approximate solutions of the Schrödinger equation can be approximately estimated with such a representation.
引用
收藏
页码:275 / 277
页数:2
相关论文
共 50 条
  • [1] A canonical dilation of the Schrödinger equation
    M. F. Brown
    Russian Journal of Mathematical Physics, 2014, 21 : 316 - 325
  • [2] Stroboscopic Averaging for the Nonlinear Schrödinger Equation
    F. Castella
    Ph. Chartier
    F. Méhats
    A. Murua
    Foundations of Computational Mathematics, 2015, 15 : 519 - 559
  • [3] Integration of the Schrödinger equation by canonical transformations
    Tsaur, Gin-Yih
    Wang, Jyhpyng
    Physical Review A. Atomic, Molecular, and Optical Physics, 2002, 65 (01): : 121041 - 121047
  • [4] Averaging Principle for Multiscale Stochastic Fractional Schrödinger Equation
    Peng Gao
    Annales Henri Poincaré, 2020, 21 : 1637 - 1675
  • [5] On the XFEL Schrödinger Equation: Highly Oscillatory Magnetic Potentials and Time Averaging
    Paolo Antonelli
    Agisillaos Athanassoulis
    Hichem Hajaiej
    Peter Markowich
    Archive for Rational Mechanics and Analysis, 2014, 211 : 711 - 732
  • [6] Averaging Principle for the Higher Order Nonlinear Schrödinger Equation with a Random Fast Oscillation
    Peng Gao
    Journal of Statistical Physics, 2018, 171 : 897 - 926
  • [7] Specificity of the Schrödinger equation
    Cetto A.M.
    la Peña L.
    Valdés-Hernández A.
    Quantum Studies: Mathematics and Foundations, 2015, 2 (3) : 275 - 287
  • [8] Hyperbolic Schrödinger equation
    Zheng Z.
    Xuegang Y.
    Advances in Applied Clifford Algebras, 2004, 14 (2) : 207 - 213
  • [9] Canonical solution and singularity propagations of the nonlocal semi-discrete Schrödinger equation
    Kui Chen
    Chongning Na
    Jiaxi Yang
    Nonlinear Dynamics, 2023, 111 : 1685 - 1700
  • [10] Schrödinger equation as a confluent Heun equation
    Figueiredo, Bartolomeu Donatila Bonorino
    PHYSICA SCRIPTA, 2024, 99 (05)