Canonical averaging of the Schrödinger equation

被引:0
|
作者
A. G. Chirkov
机构
[1] St. Petersburg State Technical University,
来源
Technical Physics | 2002年 / 47卷
关键词
Quantum Mechanic; Perturbation Theory; Approximate Solution; Hamiltonian System; Canonical Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The representation of the Schrödinger equation in the form of a classical Hamiltonian system makes it possible to construct a unified perturbation theory that is based on the theory of canonical transformations and covers both classical and quantum mechanics. Also, the closeness of the exact and approximate solutions of the Schrödinger equation can be approximately estimated with such a representation.
引用
收藏
页码:275 / 277
页数:2
相关论文
共 50 条
  • [21] Symmetries of the Free Schrödinger Equation
    G. A. Kotel'nikov
    Journal of Russian Laser Research, 2002, 23 : 565 - 579
  • [22] Schrödinger Equation with Signed Hamiltonian
    A. A. Loboda
    Russian Journal of Mathematical Physics, 2020, 27 : 99 - 103
  • [23] On the exact discretization of Schrödinger equation
    Chou, Chih-Lung
    1600, Elsevier B.V. (386):
  • [24] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [25] An asymptotic expression of the Schrödinger equation
    Zhaosheng Feng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 363 - 375
  • [26] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [27] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [28] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [29] Schrödinger Equation for An Extended Electron
    Antônio B. Nassar
    International Journal of Theoretical Physics, 2007, 46 : 548 - 552
  • [30] Schrödinger Equation in Moving Domains
    Alessandro Duca
    Romain Joly
    Annales Henri Poincaré, 2021, 22 : 2029 - 2063