Canonical averaging of the Schrödinger equation

被引:0
|
作者
A. G. Chirkov
机构
[1] St. Petersburg State Technical University,
来源
Technical Physics | 2002年 / 47卷
关键词
Quantum Mechanic; Perturbation Theory; Approximate Solution; Hamiltonian System; Canonical Transformation;
D O I
暂无
中图分类号
学科分类号
摘要
The representation of the Schrödinger equation in the form of a classical Hamiltonian system makes it possible to construct a unified perturbation theory that is based on the theory of canonical transformations and covers both classical and quantum mechanics. Also, the closeness of the exact and approximate solutions of the Schrödinger equation can be approximately estimated with such a representation.
引用
收藏
页码:275 / 277
页数:2
相关论文
共 50 条
  • [41] Complex cooridinate scaling and the Schrödinger equation
    R. J. Buenker
    Russian Journal of Physical Chemistry B, 2014, 8 : 14 - 21
  • [42] Effective Approximation for the Semiclassical Schrödinger Equation
    Philipp Bader
    Arieh Iserles
    Karolina Kropielnicka
    Pranav Singh
    Foundations of Computational Mathematics, 2014, 14 : 689 - 720
  • [43] The Vacuum Electromagnetic Fields and the Schrödinger Equation
    A. J. Faria
    H. M. França
    G. G. Gomes
    R. C. Sponchiado
    Foundations of Physics, 2007, 37 : 1296 - 1305
  • [44] Stationary solutions for the nonlinear Schrödinger equation
    Ferrario, Benedetta
    Zanella, Margherita
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2025,
  • [45] KAM Theorem for the Nonlinear Schrödinger Equation
    Benoît Grébert
    Thomas Kappeler
    Journal of Nonlinear Mathematical Physics, 2001, 8 (Suppl 1) : 133 - 138
  • [46] Radial Schrödinger equation: The spectral problem
    O. S. Pavlova
    A. R. Frenkin
    Theoretical and Mathematical Physics, 2000, 125 : 1506 - 1515
  • [47] Semiclassical Solutions of the Nonlinear Schrödinger Equation
    A. V. Shapovalov
    A. Yu. Trifonov
    Journal of Nonlinear Mathematical Physics, 1999, 6 : 127 - 138
  • [48] On the quaternionic form of the Pauli?Schr;dinger equation
    Cahay, M.
    Morris, D.
    PHYSICA SCRIPTA, 2020, 95 (01)
  • [49] Derivation of the Schrödinger equation from QED
    Efthimiades, Spyros
    EUROPEAN JOURNAL OF PHYSICS, 2024, 45 (03)
  • [50] Darboux transformations for the generalized Schrödinger equation
    A. A. Suzko
    G. Giorgadze
    Physics of Atomic Nuclei, 2007, 70 : 607 - 610