Stabilization and Control for the Biharmonic Schrödinger Equation

被引:0
|
作者
Roberto A. Capistrano–Filho
Márcio Cavalcante
机构
[1] Universidade Federal de Pernambuco (UFPE),Departamento de Matemática
[2] Universidade Federal de Alagoas (UFAL),Instituto de Matemática
来源
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrödinger; Propagation of compactness; Propagation of regularity; Stabilization; Primary 35Q55; Secondary 93B05; 93D15; 35A21;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrödinger system on a periodic domain T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} with internal control supported on an arbitrary sub-domain of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrödinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:41
相关论文
共 50 条
  • [41] Schrödinger Equation with Signed Hamiltonian
    A. A. Loboda
    Russian Journal of Mathematical Physics, 2020, 27 : 99 - 103
  • [42] An asymptotic expression of the Schrödinger equation
    Zhaosheng Feng
    David Y. Gao
    Zeitschrift für angewandte Mathematik und Physik, 2009, 60 : 363 - 375
  • [43] Fractional nonlinear Schrödinger equation
    Jesus A. Mendez-Navarro
    Pavel I. Naumkin
    Isahi Sánchez-Suárez
    Zeitschrift für angewandte Mathematik und Physik, 2019, 70
  • [44] On the exact discretization of Schrödinger equation
    Chou, Chih-Lung
    1600, Elsevier B.V. (386):
  • [45] Stabilization with Arbitrary Convergence Rate for the Schrödinger Equation Subjected to an Input Time Delay
    Yanfang Li
    Hao Chen
    Yaru Xie
    Journal of Systems Science and Complexity, 2021, 34 : 975 - 994
  • [46] Finite Temperature Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Yi-Heng Wu
    Qing-Cai Wang
    Yan Wang
    International Journal of Theoretical Physics, 2011, 50 : 2546 - 2551
  • [47] Collapse in the nonlinear Schrödinger equation
    Yu. N. Ovchinnikov
    I. M. Sigal
    Journal of Experimental and Theoretical Physics, 1999, 89 : 35 - 40
  • [48] Eigenvalues of the nonlinear Schrödinger equation
    S. Geltman
    The European Physical Journal D, 2012, 66
  • [49] Schrödinger Equation for An Extended Electron
    Antônio B. Nassar
    International Journal of Theoretical Physics, 2007, 46 : 548 - 552
  • [50] Schrödinger Equation in Moving Domains
    Alessandro Duca
    Romain Joly
    Annales Henri Poincaré, 2021, 22 : 2029 - 2063