Stabilization and Control for the Biharmonic Schrödinger Equation

被引:0
|
作者
Roberto A. Capistrano–Filho
Márcio Cavalcante
机构
[1] Universidade Federal de Pernambuco (UFPE),Departamento de Matemática
[2] Universidade Federal de Alagoas (UFAL),Instituto de Matemática
来源
关键词
Bourgain spaces; Exact controllability; Fourth order nonlinear Schrödinger; Propagation of compactness; Propagation of regularity; Stabilization; Primary 35Q55; Secondary 93B05; 93D15; 35A21;
D O I
暂无
中图分类号
学科分类号
摘要
The main purpose of this paper is to show the global stabilization and exact controllability properties of a fourth order nonlinear Schrödinger system on a periodic domain T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document} with internal control supported on an arbitrary sub-domain of T\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {T}$$\end{document}. More precisely, by certain properties of propagation of compactness and regularity in Bourgain spaces, for the solutions of the associated linear system, we show that the system is globally exponentially stabilizable. This property together with the local exact controllability shows that fourth order nonlinear Schrödinger is globally exactly controllable.
引用
收藏
页码:103 / 144
页数:41
相关论文
共 50 条
  • [31] Iterative Solutions of the Schrödinger Equation
    George Rawitscher
    Few-Body Systems, 2014, 55 : 821 - 824
  • [32] A canonical dilation of the Schrödinger equation
    M. F. Brown
    Russian Journal of Mathematical Physics, 2014, 21 : 316 - 325
  • [33] On the Linear Forms of the Schrödinger Equation
    Y. Kasri
    A. Bérard
    Y. Grandati
    L. Chetouani
    International Journal of Theoretical Physics, 2012, 51 : 1370 - 1378
  • [34] Derivation of Nonlinear Schrödinger Equation
    Xiang-Yao Wu
    Bai-Jun Zhang
    Xiao-Jing Liu
    Li Xiao
    Yi-Heng Wu
    Yan Wang
    Qing-Cai Wang
    Shuang Cheng
    International Journal of Theoretical Physics, 2010, 49 : 2437 - 2445
  • [35] Thermodynamic Gravity and the Schrödinger Equation
    Merab Gogberashvili
    International Journal of Theoretical Physics, 2011, 50 : 2391 - 2402
  • [36] Matlab package for the Schrödinger equation
    Damian Trif
    Journal of Mathematical Chemistry, 2008, 43 : 1163 - 1176
  • [37] Separability of Solutions to a Schr?dinger Equation
    王文华
    曹怀信
    郭志华
    余保民
    Communications in Theoretical Physics, 2014, 62 (08) : 205 - 209
  • [38] On Gravitational Effects in the Schrödinger Equation
    M. D. Pollock
    Foundations of Physics, 2014, 44 : 368 - 388
  • [39] Theory of bifurcations of the Schrödinger equation
    A. A. Boichuk
    A. A. Pokutnyi
    Differential Equations, 2017, 53 : 855 - 863
  • [40] Symmetries of the Free Schrödinger Equation
    G. A. Kotel'nikov
    Journal of Russian Laser Research, 2002, 23 : 565 - 579