Arithmetic Properties of Non-Squashing Partitions into Distinct Parts

被引:0
|
作者
Øystein J. Rødseth
James A. Sellers
Kevin M. Courtright
机构
[1] University of Bergen,Department of Mathematics
[2] Penn State University,Department of Mathematics
关键词
05A17; 11P83; partitions; non-squashing partitions; stacking boxes; congruences;
D O I
10.1007/s00026-004-0224-4
中图分类号
学科分类号
摘要
A partition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$n = p_1 + p_2 + \cdots + p_k $$\end{document} with \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1 \leq p_1 \leq p_2 \leq \cdots \leq p_k $$\end{document} is non-squashing if \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p_1 + \cdots + p_j \leqslant p_{j + 1} \;{\text{for}}\;1 \leqslant j \leqslant k - 1.$$\end{document} On their way towards the solution of a certain box-stacking problem, Sloane and Sellers were led to consider the number b(n) of non-squashing partitions of n into distinct parts. Sloane and Sellers did briefly consider congruences for b(n) modulo 2. In this paper we show that 2r-2 is the exact power of 2 dividing the difference b(2r+1n)−b(2r-1n) for n odd and r ≥ 2.
引用
收藏
页码:347 / 353
页数:6
相关论文
共 50 条
  • [1] On non-squashing partitions
    Sloane, NJA
    Sellers, JA
    DISCRETE MATHEMATICS, 2005, 294 (03) : 259 - 274
  • [2] On a general class of non-squashing partitions
    Folsom, Amanda
    Homma, Youkow
    Ryu, Jun Hwan
    Tong, Benjamin
    DISCRETE MATHEMATICS, 2016, 339 (05) : 1482 - 1506
  • [3] Arithmetic properties of partitions with odd parts distinct
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 22 : 273 - 284
  • [4] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 22 (03): : 273 - 284
  • [5] Arithmetic properties of partitions with even parts distinct
    Andrews, George E.
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 169 - 181
  • [6] Arithmetic properties of partitions with even parts distinct
    George E. Andrews
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 23 : 169 - 181
  • [7] The arithmetic of partitions into distinct parts
    Ahlgren, S
    Lovejoy, J
    MATHEMATIKA, 2001, 48 (95-96) : 203 - 211
  • [8] Arithmetic properties of 5-regular partitions into distinct parts
    Baruah, Nayandeep Deka
    Sarma, Abhishek
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 657 - 674
  • [9] Arithmetic properties of 3-regular partitions with distinct odd parts
    V. S. Veena
    S. N. Fathima
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 69 - 80
  • [10] Arithmetic properties of 3-regular partitions with distinct odd parts
    Veena, V. S.
    Fathima, S. N.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 69 - 80