Arithmetic properties of partitions with even parts distinct

被引:1
|
作者
George E. Andrews
Michael D. Hirschhorn
James A. Sellers
机构
[1] The Pennsylvania State University,Department of Mathematics
[2] UNSW,School of Mathematics and Statistics
来源
The Ramanujan Journal | 2010年 / 23卷
关键词
Congruence; Partition; Distinct even parts; Generating function; Lebesgue identity; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the function ped(n), the number of partitions of an integer n wherein the even parts are distinct (and the odd parts are unrestricted). Our goal is to consider this function from an arithmetical point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). We prove a number of results for ped(n) including the following: For all n≥0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{ped}(9n+4)\equiv0\pmod{4}$$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathit{ped}(9n+7)\equiv0\pmod{12}.$$\end{document} Indeed, we compute appropriate generating functions from which we deduce these congruences and find, in particular, the surprising result that \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sum_{n\geq0}\mathit{ped}(9n+7)q^n=12\frac{ (q^{2};q^{2})_\infty ^{4}(q^{3};q^{3})_\infty ^{6}(q^{4};q^{4})_\infty ^{}}{(q^{};q^{})_\infty ^{11}}.$$\end{document} We also show that ped(n) is divisible by 6 at least 1/6 of the time.
引用
收藏
页码:169 / 181
页数:12
相关论文
共 50 条
  • [1] Arithmetic properties of partitions with even parts distinct
    Andrews, George E.
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 169 - 181
  • [2] Arithmetic properties of partitions with odd parts distinct
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 22 : 273 - 284
  • [3] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 22 (03): : 273 - 284
  • [4] The arithmetic of partitions into distinct parts
    Ahlgren, S
    Lovejoy, J
    MATHEMATIKA, 2001, 48 (95-96) : 203 - 211
  • [5] Arithmetic properties of bipartitions with even parts distinct
    Lin, Bernard L. S.
    RAMANUJAN JOURNAL, 2014, 33 (02): : 269 - 279
  • [6] Arithmetic properties of bipartitions with even parts distinct
    Bernard L. S. Lin
    The Ramanujan Journal, 2014, 33 : 269 - 279
  • [7] On the number of partitions with distinct even parts
    Chen, Shi-Chao
    DISCRETE MATHEMATICS, 2011, 311 (12) : 940 - 943
  • [8] Arithmetic properties of 5-regular partitions into distinct parts
    Baruah, Nayandeep Deka
    Sarma, Abhishek
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 657 - 674
  • [9] Arithmetic Properties of Non-Squashing Partitions into Distinct Parts
    Øystein J. Rødseth
    James A. Sellers
    Kevin M. Courtright
    Annals of Combinatorics, 2004, 8 (3) : 347 - 353
  • [10] Arithmetic properties of 3-regular partitions with distinct odd parts
    V. S. Veena
    S. N. Fathima
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 69 - 80