Arithmetic properties of partitions with odd parts distinct

被引:0
|
作者
Michael D. Hirschhorn
James A. Sellers
机构
[1] UNSW,School of Mathematics and Statistics
[2] The Pennsylvania State University,Department of Mathematics
来源
The Ramanujan Journal | 2010年 / 22卷
关键词
Congruence; Partition; Distinct odd parts; 05A17; 11P83;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider the function pod(n), the number of partitions of an integer n wherein the odd parts are distinct (and the even parts are unrestricted), a function which has arisen in recent work of Alladi. Our goal is to consider this function from an arithmetic point of view in the spirit of Ramanujan’s congruences for the unrestricted partition function p(n). We prove a number of results for pod(n) including the following infinite family of congruences: for all α≥0 and n≥0, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{pod}\biggl(3^{2\alpha+3}n+\frac{23\times3^{2\alpha+2}+1}{8}\biggr)\equiv 0\ (\mathrm{mod}\ 3).$$\end{document}
引用
收藏
页码:273 / 284
页数:11
相关论文
共 50 条
  • [1] Arithmetic properties of partitions with odd parts distinct
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 22 (03): : 273 - 284
  • [2] Arithmetic properties of 3-regular partitions with distinct odd parts
    Veena, V. S.
    Fathima, S. N.
    ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITAT HAMBURG, 2021, 91 (01): : 69 - 80
  • [3] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    B. Hemanthkumar
    H. S. Sumanth Bharadwaj
    M. S. Mahadeva Naika
    Acta Mathematica Vietnamica, 2019, 44 : 797 - 811
  • [4] Arithmetic properties of 3-regular partitions with distinct odd parts
    V. S. Veena
    S. N. Fathima
    Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 2021, 91 : 69 - 80
  • [5] Arithmetic Properties of 9-Regular Partitions with Distinct Odd Parts
    Hemanthkumar, B.
    Bharadwaj, H. S. Sumanth
    Naika, M. S. Mahadeva
    ACTA MATHEMATICA VIETNAMICA, 2019, 44 (03) : 797 - 811
  • [6] Arithmetic properties of partitions with even parts distinct
    Andrews, George E.
    Hirschhorn, Michael D.
    Sellers, James A.
    RAMANUJAN JOURNAL, 2010, 23 (1-3): : 169 - 181
  • [7] Arithmetic properties of partitions with even parts distinct
    George E. Andrews
    Michael D. Hirschhorn
    James A. Sellers
    The Ramanujan Journal, 2010, 23 : 169 - 181
  • [8] On the partitions into distinct parts and odd parts
    Merca, Mircea
    QUAESTIONES MATHEMATICAE, 2021, 44 (08) : 1095 - 1105
  • [9] The arithmetic of partitions into distinct parts
    Ahlgren, S
    Lovejoy, J
    MATHEMATIKA, 2001, 48 (95-96) : 203 - 211
  • [10] A Note on Partitions into Distinct Parts and Odd Parts
    Dongsu Kim
    Ae Ja Yee
    The Ramanujan Journal, 1999, 3 : 227 - 231